波形钢腹板组合梁体外预应力筋模型试验及建议公式

引用文献:

曹洪亮 李广昊 陆小蕊 高华睿. 波形钢腹板组合梁体外预应力筋模型试验及建议公式[J]. 建筑结构,2022,48(06):119-125.

CAO Hongliang LI Guanghao LU Xiaui GAO Huarui. Model test and suggested formula of external prestressed tendons of corrugated steel web composite beams[J]. Building Structure,2022,48(06):119-125.

作者:曹洪亮 李广昊 陆小蕊 高华睿
单位:山东高广高速公路有限公司,山东交通学院土木工程系,山东大学岩土与结构工程研究中心
摘要:为研究波形钢腹板组合梁受弯破坏过程中弹性阶段体外预应力增量的影响因素和计算方法,验证了基于光纤的智能预应力钢绞线在桥梁工程中应用的可行性和优越性,基于光纤光栅智能钢绞线技术对波形钢腹板组合梁模型开展试验研究。考虑了荷载形式、剪切变形和二次效应,推导了弹性阶段适用于波形钢腹板组合梁的体外预应力筋应力增量的计算公式。研究结果表明:公式计算结果与试验结果吻合较好;在弹性阶段,二次效应对弹性阶段体外预应力增量的影响为0.2%,可以忽略不计;光纤光栅传感器和振弦式压力传感器测量的锚下预应力-荷载的发展规律相同,测试数据的误差最大值为4.01%,证明了光纤光栅智能钢绞线技术在工程应用中的可行性和准确性;光纤光栅智能钢绞线技术不仅具有传统钢绞线优异的力学指标和优良的感知性能,而且突破了振弦式传感器监测测点少的局限性,所以光纤光栅智能钢绞线技术比振弦式压力传感器更具优越性。
关键词:波形钢腹板组合梁,预应力筋,光纤光栅智能钢绞线,二次效应,应力增量
作者简介:曹洪亮,学士,高级工程师,主要从事公路桥梁建设管理等方面的研究,Email:1090959229@qq.com。
基金:山东省高等学校科技计划项目(J15LG02)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] VIRLOGEUX M.New trends in prestressed concrete bridges[J].Structural Concrete,2002,3(2):67-97.
[2] 邓勇.波形钢腹板组合箱梁应用与研究进展[J].国防交通工程与技术,2009,7(6):1-4.
[3] 王达磊,贺君,陈艾荣,等.内衬混凝土波折钢腹板梁抗弯性能试验研究[J].同济大学学报(自然科学版),2012,40(9):1312-1317.
[4] 李立峰,刘志才,王芳.波形钢腹板PC组合箱梁抗弯承载力的理论与试验研究[J].工程力学,2009,26(7):89-96.
[5] 李宏江,叶见曙,万水,等.剪切变形对波形钢腹板箱梁挠度的影响[J].交通运输工程学报,2002,2(4):17-20.
[6] SAYED-AHMED,E Y.Behavior of steel and (or)composite girders with corrugated steel webs [J].Canadian Journal of Civil Engineering,2001,28(4):656-672.
[7] 张峰,李术才,叶见曙,等.波形钢板内衬混凝土部位抗剪强度[J].东南大学学报(自然科学版),2016,46(6):1264-1270.
[8] HE JUN,LIU YUQING,CHEN AIRONG,et al.Shear behavior of partially encased composite I-girder with corrugated steel web:Experimental study [J].Journal of Constructional Steel Research,2012,77(10):193-209.
[9] 江克斌,丁勇,杨建奎,等.波形钢腹板PC组合箱梁纯扭作用下抗扭承载力试验研究[J].工程力学,2013,30(6):175-182.
[10] 张锋,徐栋,席广恒.弹性阶段体外预应力钢束二次效应研究[J].结构工程师,2006,22(6):19-24.
[11] 杜进生,冯建祥,边晓龙,等.波纹钢腹板体外预应力混凝土箱梁塑性铰长度研究[J].中国公路学报,2017,30(5):67-73.
[12] LIU X G,FAN J S,BAI Y,et al.Stress increment of unbonded prestressing tendons in prestressed concrete girders with corrugated steel webs[J].Journal of Bridge Engineering,2015,20 (7):04014094.
[13] 刘晓刚,聂鑫,樊健生.波形钢腹板组合梁无黏结预应力筋应力增量研究[J].建筑结构学报,2014,35(10):47-55.
[14] 刘玉擎,陈艾荣.组合折腹桥梁设计模式指南[M].北京:人民交通出版社,2015.
[15] 袁爱民,董华能,周元华,等.节段预制箱梁体外束极限应力增量计算方法[J].中国科技论文,2016,11(1):1-6.
[16] 贺志启,刘钊,王景全.基于挠度的体外预应力梁应力增量统一算法[J].土木工程学报,2008,41(9):90-96.
[17] CHEN X C,BAI Z Z,ZENG Y,et al.Prestressed concrete bridges with corrugated steel webs[J].Nonlinear Analysis and Experimental Investigation,2016,21(5):1045-1067.
Model test and suggested formula of external prestressed tendons of corrugated steel web composite beams
CAO Hongliang LI Guanghao LU Xiaui GAO Huarui
(Shandong Gaoguang Expressway Group Co., Ltd. Department of Civil Engineering, Shandongjiaotong University Geotechnical and Structural Engineering Research Center of Shandong University)
Abstract: In order to study the influencing factors and calculating methods in the elastic stage prestressed increment of prestressed tendons in corrugated steel web composite beam under bending failure process. The feasibility and superiority of the application of intelligent prestressed steel strand based on optical fiber in bridge engineering were verified. Based on the technology of fiber grating fiber grating intelligent steel strand and the model of corrugated steel web composite beam, the experimental research was carried out. Considering the load form, shear deformation and secondary effect, the calculation formula of stress increment of external prestressed tendon for corrugated steel web composite beam in elastic stage was deduced. The results show that the calculating results are in good agreement with the experimental results. The effect of second-order effect on external prestressing increment of the elastic stage is 0.2%, which could be ignored. The development law of effective prestressed-load measuring by fiber grating sensor and vibrating string pressure sensor is same, and the maximum error of test data is 4.01%. The feasibility and accuracy of fiber grating intelligent steel strand technology in engineering application are proved. Fiber grating intelligent steel strand technology not only has the traditional steel strand excellent mechanical indicators and excellent perceptual performance, but also breaks through the limitation of fewer monitoring points of vibrating string sensor, so the fiber grating intelligent steel strand technology is more advantageous than vibrating string pressure sensor.
Keywords: corrugated steel web composite beam; prestressed tendon; fiber grating intelligent steel strand; second-order effect; stress increment
555 0 0
文字:     A-     A+     默认 取消