参数不对称隔震支座在连体结构中的应用

引用文献:

高嵩 王世刚 陈鹏 吴一红 陈勇 刘旭 吕昌明 梁云翔. 参数不对称隔震支座在连体结构中的应用[J]. 建筑结构,2022,48(14):79-84,114.

GAO Song WANG Shigang CHEN Peng WU Yihong CHEN Yong LIU Xu LÜ Changming LIANG Yunxiang. Application of parametric asymmetric isolation bearing in conjoined structure[J]. Building Structure,2022,48(14):79-84,114.

作者:高嵩 王世刚 陈鹏 吴一红 陈勇 刘旭 吕昌明 梁云翔
单位:中国建筑东北设计研究院有限公司 中国建筑第八工程局有限公司东北公司
摘要:两栋形体不对称塔楼在高位通过空中连廊连接为整体结构。连接体一层是观光平台,二层是室外游泳池,因为塔楼形体不对称,连接体平面位置偏置,并且游泳池的设备管线只从一侧塔楼进出,造成两侧变形缝的性能需求不一致。连接体的一侧变形缝设置较柔的摩擦摆隔震支座,通过较大的位移释放支座水平反力;另一侧设置较刚的摩擦摆隔震支座和黏滞阻尼器,以改善设备管道的抗疲劳性能,从而能更合理地满足安全性和使用性需要。对连体结构双塔进行动力弹塑性分析,对不同参数隔震支座的选型、摩擦摆隔震支座最大矢量位移、竖向作用力对摩擦摆隔震支座的影响等几个相关问题进行了分析。结果表明,根据性能需求的差异而选定的隔震支座参数,可以更好地匹配建筑功能,且具有足够的安全储备。
关键词:连体结构;隔震设计;参数不对称;摩擦摆隔震支座;黏滞阻尼器;最大矢量位移
作者简介:高嵩,学士,教授级高级工程师,一级注册结构工程师,主要从事超高层结构设计,Email:rische@qq.com。
基金:
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 建筑摩擦摆隔震支座:GB/T 37358—2019[S].北京:中国标准出版社,2019.
[2] 公路桥梁抗震设计细则:JTG/T B02-01—2008[S].北京:人民交通出版社,2008.
[3] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[4] Computers and Structures Inc.,北京筑信达工程咨询有限公司.CSI分析参考手册[M].北京,2018.
[5] 建筑抗震设计规范:GB 50011—2010[S].2016年版.北京:中国建筑工业出版社,2016.
[6] 李宏男.结构多维抗震理论与设计方法[M].北京:科学出版社,1998.
[7] NEHRP guidelines for the seismic rehabilitation of buildings:FEMA 273 [S].Washington D.C.:Federal Emergency Management Agency,1997.
[8] 王建强,管品武.摩擦摆基础隔震结构双向地震反应分析[J].世界地震工程,2005,21(3):11-15.
[9] Minimum design loads and associated criteria for bulidings and other structure:ASCE 7[S].Reston Virginia:The American Society of Civil Engineer,2016.
[10] 曹胜涛,李志山.基于显式摩擦摆单元的大规模复杂连体结构非线性时程分析[J].工程力学,2019,36(6):128-137.
Application of parametric asymmetric isolation bearing in conjoined structure
GAO Song WANG Shigang CHEN Peng WU Yihong CHEN Yong LIU Xu LÜ Changming LIANG Yunxiang
(China Northeast Architectural Design & Research Institute Co.,Ltd. Northeast Branch China Construction Eighth Engineering Divison Co.,Ltd.)
Abstract: The two asymmetrical towers are connected by the air connective corridor to form a whole structure at a high level. The first floor of the connective corridor is a sightseeing platform, and the second floor is an outdoor swimming pool. Because the shape of the tower is asymmetrical, the plane of the connective corridor is offset, and the equipment pipelines of the swimming pool only enter and exit from one tower, resulting in inconsistent performance requirements of the deformation joints on both sides. One side of the connective corridor was provided with a relatively soft friction pendulum vibration isolation bearing, which releases the horizontal reaction force of the bearing through a large displacement; The other side was provided with a relatively rigid friction pendulum isolation bearing and a viscous damper to improve the anti-fatigue performance of equipment pipelines, so as to meet the needs of safety and usability more reasonably. The dynamic elastic-plastic analysis of the conjoined twin towers was carried out, and the selection of the isolation bearing with different parameters, the maximum vector displacement of the friction pendulum isolation bearing, the influence of vertical force on the friction pendulum isolation bearing, etc. were analyzed. The results show that the seismic isolation bearing parameters selected according to the difference of performance requirements can better match the building function and have sufficient safety reserves.
Keywords: conjoined structure; isolation design; parameter asymmetry; friction pendulum isolation bearing; viscous damper; maximum vector displacement
399 0 0
文字:     A-     A+     默认 取消