“双碳”目标下制氢、氢能实验室防爆设计探讨
摘要:氢能源作为清洁能源对“双碳”目标的实现具有重大意义,氢气作为极具爆炸危险性的气体,其防爆设计尤为值得关注。本文结合实际项目,从制氢、氢能实验室的建设条件、泄压面积及电气与通风措施等方面探讨了其防爆设计方案,供其他氢能实验室工程防爆设计参考。
关键词:氢气清洁能源制氢实验室防爆设计泄压面积机械通风局部通风
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 公安部天津消防研究所,公安部四川消防研究所.建筑设计防火规范:GB 50016—2014[S].2018年版.北京:中国计划出版社,2018:32-33,127,412-441.
[2] 中国电子工程设计院.氢气站设计规范:GB 50177—2005[S].北京:中国计划出版社,2005:5-7,17-19,25,43.
[3] 中国寰球工程公司.爆炸危险环境电力装置设计规范:GB 50058—2014[S].北京:中国计划出版社,2014:7-10.
[4] 中国联合工程有限公司.锅炉房设计标准:GB 50041—2020[S].北京:中国计划出版社,2020:55,61.
[5] 公安部四川消防研究所.建筑防烟排烟系统技术标准:GB 51251—2017[S].北京:中国计划出版社,2017:11.
[6] Technical Committee on Explosion Protection Systems.Standard on explosion prevention systems:NFPA 69-2014[S].Quincy:National Fire Protection Association,2016:13.
[7] Technical Committee on Explosion Protection Systems.Standard on explosion protection by deflagration venting:NFPA 68-2018[S].Quincy:National Fire Protection Association,2018:15-19,78-80.
[8] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:35.
[9] 中国有色工程有限公司,中国恩菲工程技术有限公司.工业建筑供暖通风与空气调节设计规范:GB 50019—2015[S].北京:中国计划出版社,2015:42.
[10] 中科院建筑设计研究院有限公司.科研建筑设计标准:JGJ 91—2019[S].北京:中国建筑工业出版社,2019:22-23,74-75.
[11] BURKE M P,CHAOS M,JU Y,et al.Comprehensive H2/O2 kinetic model for high-pressure combustion[J].International journal of chemical kinetics,2012,44(7):444-474.
[12] TSE S D,ZHU D L,LAW C K.Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[C]//Proceedings of the 28th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,2000:1793-1800.
[13] KÉROMNÈS A,METCALFE W K,HEUFER K A,et al.An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J].Combustion and flame,2013,160(6):995-1011.
[14] DOWDY D R,SMITH D B,TAYLOR S C,et al.The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:325-332.
[15] KOROLL G W,KUMAR R K,BOWLES E M.Burning velocities of hydrogen-air mixtures[J].Combustion and flame,1993,94(3):330-340.
[16] IIJIMA T,TAKENO T.Effects of temperature and pressure on burning velocity[J].Combustion and flame,1986,65(1):35-43.
[17] VAGELOPOULOS C M,EGOLFOPOULOS F N,LAW C K.Further considerations on the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 25th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1995:1341-1347.
[18] KWON O C,FAETH G M.Flame/stretch interactions of premixed hydrogen-fueled flames:measurements and predictions[J].Combustion and flame,2001,124(4):590-610.
[19] AUNG K T,HASSAN M I,FAETH G M.Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure[J].Combustion and flame,1997,109(1/2):1-24.
[20] EGOLFOPOULOS F N,LAW C K.An experimental and computational study of the burning rates of ultra-lean to moderately rich H2/O2/N2 laminar flames with pressure variations[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:333-346.
[21] WU C K,LAW C K.On the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 20th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1984:1941-1949.
[22] DAYMA G,HALTER F,DAGAUT P.New insights into the peculiar behavior of laminar burning velocities of hydrogen-air flames according to pressure and equivalence ratio[J].Combustion and flame,2014,161(9):2235-2241.
[23] DAHOE A E.Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions[J].Journal of loss prevention in the process industries,2005,18(3):152-166.
[24] ZHANG Q,LI D.Comparison of the explosion characteristics of hydrogen,propane,and methane clouds at the stoichiometric concentrations[J].International journal of hydrogen energy,2017,42 (21):14794-14808.
[25] ANDREWS G E,BRADLEY D.Determination of burning velocities:a critical review[J].Combustion and flame,1972,18(1):133-153.
[26] 化工暖通设计技术委员会.化工采暖通风与空气调节设计规范:HG/T 20698—2009[S].北京:中国计划出版社,2010:13.
[2] 中国电子工程设计院.氢气站设计规范:GB 50177—2005[S].北京:中国计划出版社,2005:5-7,17-19,25,43.
[3] 中国寰球工程公司.爆炸危险环境电力装置设计规范:GB 50058—2014[S].北京:中国计划出版社,2014:7-10.
[4] 中国联合工程有限公司.锅炉房设计标准:GB 50041—2020[S].北京:中国计划出版社,2020:55,61.
[5] 公安部四川消防研究所.建筑防烟排烟系统技术标准:GB 51251—2017[S].北京:中国计划出版社,2017:11.
[6] Technical Committee on Explosion Protection Systems.Standard on explosion prevention systems:NFPA 69-2014[S].Quincy:National Fire Protection Association,2016:13.
[7] Technical Committee on Explosion Protection Systems.Standard on explosion protection by deflagration venting:NFPA 68-2018[S].Quincy:National Fire Protection Association,2018:15-19,78-80.
[8] 中国建筑科学研究院.民用建筑供暖通风与空气调节设计规范:GB 50736—2012[S].北京:中国建筑工业出版社,2012:35.
[9] 中国有色工程有限公司,中国恩菲工程技术有限公司.工业建筑供暖通风与空气调节设计规范:GB 50019—2015[S].北京:中国计划出版社,2015:42.
[10] 中科院建筑设计研究院有限公司.科研建筑设计标准:JGJ 91—2019[S].北京:中国建筑工业出版社,2019:22-23,74-75.
[11] BURKE M P,CHAOS M,JU Y,et al.Comprehensive H2/O2 kinetic model for high-pressure combustion[J].International journal of chemical kinetics,2012,44(7):444-474.
[12] TSE S D,ZHU D L,LAW C K.Morphology and burning rates of expanding spherical flames in H2/O2/inert mixtures up to 60 atmospheres[C]//Proceedings of the 28th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,2000:1793-1800.
[13] KÉROMNÈS A,METCALFE W K,HEUFER K A,et al.An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures[J].Combustion and flame,2013,160(6):995-1011.
[14] DOWDY D R,SMITH D B,TAYLOR S C,et al.The use of expanding spherical flames to determine burning velocities and stretch effects in hydrogen-air mixtures[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:325-332.
[15] KOROLL G W,KUMAR R K,BOWLES E M.Burning velocities of hydrogen-air mixtures[J].Combustion and flame,1993,94(3):330-340.
[16] IIJIMA T,TAKENO T.Effects of temperature and pressure on burning velocity[J].Combustion and flame,1986,65(1):35-43.
[17] VAGELOPOULOS C M,EGOLFOPOULOS F N,LAW C K.Further considerations on the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 25th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1995:1341-1347.
[18] KWON O C,FAETH G M.Flame/stretch interactions of premixed hydrogen-fueled flames:measurements and predictions[J].Combustion and flame,2001,124(4):590-610.
[19] AUNG K T,HASSAN M I,FAETH G M.Flame stretch interactions of laminar premixed hydrogen/air flames at normal temperature and pressure[J].Combustion and flame,1997,109(1/2):1-24.
[20] EGOLFOPOULOS F N,LAW C K.An experimental and computational study of the burning rates of ultra-lean to moderately rich H2/O2/N2 laminar flames with pressure variations[C]//Twenty-third Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1990:333-346.
[21] WU C K,LAW C K.On the determination of laminar flame speeds from stretched flames[C]//Proceedings of the 20th Symposium (International) on Combustion.Pittsburgh:The Combustion Institute,1984:1941-1949.
[22] DAYMA G,HALTER F,DAGAUT P.New insights into the peculiar behavior of laminar burning velocities of hydrogen-air flames according to pressure and equivalence ratio[J].Combustion and flame,2014,161(9):2235-2241.
[23] DAHOE A E.Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions[J].Journal of loss prevention in the process industries,2005,18(3):152-166.
[24] ZHANG Q,LI D.Comparison of the explosion characteristics of hydrogen,propane,and methane clouds at the stoichiometric concentrations[J].International journal of hydrogen energy,2017,42 (21):14794-14808.
[25] ANDREWS G E,BRADLEY D.Determination of burning velocities:a critical review[J].Combustion and flame,1972,18(1):133-153.
[26] 化工暖通设计技术委员会.化工采暖通风与空气调节设计规范:HG/T 20698—2009[S].北京:中国计划出版社,2010:13.
Discussion on explosion-proof design of hydrogen production and hydrogen energy laboratories under goal of “double carbon”
Abstract: Hydrogen energy as clean energy is of great significance to the realization of the goal of “double carbon”. As a gas with great explosion danger, the explosion-proof design of hydrogen is particularly worthy of attention. Combined with the actual project, this paper discusses the explosion-proof design scheme from the aspects of the construction conditions, pressure relief area, electrical and ventilation measures of hydrogen production and hydrogen energy laboratories, which can be used as a reference for the explosion-proof design of other hydrogen energy laboratory projects.
Keywords: hydrogen; clean energy; hydrogen production; laboratory; explosion-proof design; pressure relief area; mechanical ventilation; local ventilation;
1648
0
0