西安咸阳国际机场T3航站楼空调系统新冠病毒传播风险分析
摘要:机场航站楼作为出入境的重点场所,承担着我国新型冠状病毒肺炎疫情防控的重要责任。本文对西安咸阳国际机场T3航站楼国际指廊空调系统进行简介,分析了病毒传播特性与空调系统之间的关系,使用Wells-Riley模型对国际指廊病毒感染风险进行了计算。结果显示,国际到达区域感染风险不足1%,国际等待区域感染风险不足2%,西安咸阳国际机场空调系统造成病毒传播的概率极其微小。
关键词:航站楼新冠病毒空调系统Wells-Riley模型感染风险
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 国家卫生健康委员会办公厅,国家中医药管理局办公室.新型冠状病毒肺炎诊疗方案(试行第九版)[EB/OL].(2022-03-14)[2022-08-01].https://www.gov.cn/zhengce/zhengceku/2022-03/15/5679257/files/49854a49c7004f4ea9e622f3f2c568d8.pdf.
[2] 李瑞彬,吴妍,牛建磊,等.人体呼出颗粒物的传播特性及呼吸道传染病感染概率预测方法[J].暖通空调,2020,50(9):41-54.
[3] CHAO C,MAN P W,MORAWSKA L,et al.Characterization of expiration air jets and droplet size distributions immediately at the mouth opening[J].Journal of aerosol science,2009,40(2):122-133.
[4] MORAWSKA L,JOHNSON G R,RISTOVSKI Z D,et al.Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities[J].Journal of aerosol science,2009,40(3):256-269.
[5] GRALTON J,TOVEY E,MCLAWS M L,et al.The role of particle size in aerosolised pathogen transmission:a review[J].Journal of infection,2011,62(1):1-13.
[6] 孙泽宇,柴佳彤,许建成.新冠病毒变异株“奥密克戎”的研究进展[J].病毒学报,2023,39(2):517-527.
[7] JIANG Y,ZHAO B,LI X F,et al.Investigating a safe ventilation rate for the prevention of indoor SARS transmission:an attempt based on a simulation approach[J].Building simulation,2009,2(4):281-289.
[8] ASHRAE.ASHRAE pandemic COVID-19 and airborne transmission[EB/OL].(2020-04-17)[2022-08-01].https://www.ashrae.org/news/ashraejournal/guidance-for-building-operations-during-the-covid-19-pandemic.
[9] European REHVA.COVID-19-REHVA guidance document[EB/OL].(2020-04-03)[2022-08-01].https:www.rehva.eu/activities/covid-19-guidance.
[10] 殷平.新型冠状病毒肺炎疫情与集中空调系统[J].暖通空调,2020,50(10):24-30,86.
[11] 沈晋明,刘燕敏.探讨新冠病毒传播方式及防控对策[J].暖通空调,2021,51(10):69-76.
[12] 沈晋明,刘燕敏.由华亭宾馆疫情再次探讨空调传播新冠病毒的风险[EB/OL].(2022-03-23)[2022-08-01].http://www.chinahvac.com.cn/Article/Index/10878.
[13] RILEY E C,MURPHY G R,RILEY R L.Airborne spread of measles in a suburban elementary school[J].American journal of epidemiology,1978,107(5):421-432.
[14] FENNELLY K P,NARDELL E A.The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis[J].Infection control and hospital epidemiology,1998,19(10):754-759.
[15] SEPPAENEN O,FISK W J,LEI Q H.Ventilation and performance in office work[J].Indoor air,2006,16(1):28-36.
[16] 戎向阳,刘希臣.交通建筑中新型冠状病毒的空气传播风险与室内环境控制策略[J].暖通空调,2020,50(6):12-18,65.
[17] SHA H,ZHANG X,QI D.Impact of mechanical ventilation control strategies based on non-steady-state and steady-state Wells-Riley models on airborne transmission and building energy consumption[J].Journal of Central South University,2022,29(7):2415-2430.
[18] 谢国,金永泽,姬文江,等.高速列车疫情风险评估与主动防护策略[J].交通运输工程学报,2020,20(3):110-119.
[19] FISK W J,SEPPANEN O,FAULKNER D,et al.Economic benefits of an economizer system:energy savings and reduced sick leave[EB/OL].[2022-08-01].https://eta-publications.lbl.gov/sites/default/files/lbnl-54475.pdf#:~:text=An%20economizer%20control%20system%20is%20an%20energy%20efficiency,they%20should%20decrease%20respiratory%20illnesses%20and%20sick%20leave.
[20] 吴俣,刘珏,刘民,等.新型冠状病毒Omicron变异株的流行病学特征及防控研究[J].中国全科医学,2022,25(1):14-19.
[2] 李瑞彬,吴妍,牛建磊,等.人体呼出颗粒物的传播特性及呼吸道传染病感染概率预测方法[J].暖通空调,2020,50(9):41-54.
[3] CHAO C,MAN P W,MORAWSKA L,et al.Characterization of expiration air jets and droplet size distributions immediately at the mouth opening[J].Journal of aerosol science,2009,40(2):122-133.
[4] MORAWSKA L,JOHNSON G R,RISTOVSKI Z D,et al.Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities[J].Journal of aerosol science,2009,40(3):256-269.
[5] GRALTON J,TOVEY E,MCLAWS M L,et al.The role of particle size in aerosolised pathogen transmission:a review[J].Journal of infection,2011,62(1):1-13.
[6] 孙泽宇,柴佳彤,许建成.新冠病毒变异株“奥密克戎”的研究进展[J].病毒学报,2023,39(2):517-527.
[7] JIANG Y,ZHAO B,LI X F,et al.Investigating a safe ventilation rate for the prevention of indoor SARS transmission:an attempt based on a simulation approach[J].Building simulation,2009,2(4):281-289.
[8] ASHRAE.ASHRAE pandemic COVID-19 and airborne transmission[EB/OL].(2020-04-17)[2022-08-01].https://www.ashrae.org/news/ashraejournal/guidance-for-building-operations-during-the-covid-19-pandemic.
[9] European REHVA.COVID-19-REHVA guidance document[EB/OL].(2020-04-03)[2022-08-01].https:www.rehva.eu/activities/covid-19-guidance.
[10] 殷平.新型冠状病毒肺炎疫情与集中空调系统[J].暖通空调,2020,50(10):24-30,86.
[11] 沈晋明,刘燕敏.探讨新冠病毒传播方式及防控对策[J].暖通空调,2021,51(10):69-76.
[12] 沈晋明,刘燕敏.由华亭宾馆疫情再次探讨空调传播新冠病毒的风险[EB/OL].(2022-03-23)[2022-08-01].http://www.chinahvac.com.cn/Article/Index/10878.
[13] RILEY E C,MURPHY G R,RILEY R L.Airborne spread of measles in a suburban elementary school[J].American journal of epidemiology,1978,107(5):421-432.
[14] FENNELLY K P,NARDELL E A.The relative efficacy of respirators and room ventilation in preventing occupational tuberculosis[J].Infection control and hospital epidemiology,1998,19(10):754-759.
[15] SEPPAENEN O,FISK W J,LEI Q H.Ventilation and performance in office work[J].Indoor air,2006,16(1):28-36.
[16] 戎向阳,刘希臣.交通建筑中新型冠状病毒的空气传播风险与室内环境控制策略[J].暖通空调,2020,50(6):12-18,65.
[17] SHA H,ZHANG X,QI D.Impact of mechanical ventilation control strategies based on non-steady-state and steady-state Wells-Riley models on airborne transmission and building energy consumption[J].Journal of Central South University,2022,29(7):2415-2430.
[18] 谢国,金永泽,姬文江,等.高速列车疫情风险评估与主动防护策略[J].交通运输工程学报,2020,20(3):110-119.
[19] FISK W J,SEPPANEN O,FAULKNER D,et al.Economic benefits of an economizer system:energy savings and reduced sick leave[EB/OL].[2022-08-01].https://eta-publications.lbl.gov/sites/default/files/lbnl-54475.pdf#:~:text=An%20economizer%20control%20system%20is%20an%20energy%20efficiency,they%20should%20decrease%20respiratory%20illnesses%20and%20sick%20leave.
[20] 吴俣,刘珏,刘民,等.新型冠状病毒Omicron变异株的流行病学特征及防控研究[J].中国全科医学,2022,25(1):14-19.
Transmission risk analysis of SARS-CoV-2 in air conditioning systems of Terminal 3 of Xi’an Xianyang International Airport
Abstract: The airport terminal is the top priority of the SARS-CoV-2 prevention and control. This paper presents the air conditioning system of Terminal 3 of Xi'an Xianyang International Airport briefly. The relationship between SARS-CoV-2 transmission characteristics and air conditioning system is analysed and the infection risk is calculated by the Wells-Riley model. The results show that the infection risk in the international arrival area is less than 1%, and the infection risk in the international waiting area is less than 2%. It is concluded that the probability of SARS-CoV-2 transmission caused by the air conditioning system of Xi'an Xianyang International Airport is extremely small.
Keywords: terminal; SARS-CoV-2; air conditioning system; Wells-Riley model; infection risk;
834
0
0