城市轨道交通土建工程成本数字化管控模型研究 已勘误版
摘要:在剖析城市轨道交通土建成本构成、土建成本控制机理及控制方法的基础上,提出城市轨道交通土建工程成本数字化管控模型的思路。首先搭建BIM5D信息数据库,其次构建基于BP神经网络的成本预测模型和基于赢得值的成本预警模型,并利用模糊层次法识别土建成本关键影响因素,最后通过成都市轨道交通27号线案例应用情况验证数字化管控模型的有效性。
关键词:土建成本管控BIM 5DBP神经网络赢得值模糊层次法
尊敬的用户,本篇文章需要20元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 吴蓉蓉.基于BIM 5D的建筑工程施工成本控制研究[J].建筑经济,2017(6):32-35.
[2] 赵洪岩,李秋凤,王浩.BIM在施工成本管理中的应用[J].建筑经济,2020(1):91-94.
[3] 薛建英,谭萍,孟繁敏.BIM与挣值法在施工进度及成本控制中的应用研究[J].建筑经济,2019(6):115-119.
[4] Lavanya S,G Narayana.Cost Analysis of Construction Building By Earned Value Method using MS Project Software[J].International Journal of Recent Technology and Engineering(IJRTE),2019,8(1c).
[5] Liu Lanjun,Liu Denghui,Wu Han,Wang Xinyu,Rodrigues Hugo.The Prediction of Metro Shield Construction Cost Based on a Backpropagation Neural Network Improved by Quantum Particle Swarm Optimization[J].Advances in Civil Engineering,2020.
[2] 赵洪岩,李秋凤,王浩.BIM在施工成本管理中的应用[J].建筑经济,2020(1):91-94.
[3] 薛建英,谭萍,孟繁敏.BIM与挣值法在施工进度及成本控制中的应用研究[J].建筑经济,2019(6):115-119.
[4] Lavanya S,G Narayana.Cost Analysis of Construction Building By Earned Value Method using MS Project Software[J].International Journal of Recent Technology and Engineering(IJRTE),2019,8(1c).
[5] Liu Lanjun,Liu Denghui,Wu Han,Wang Xinyu,Rodrigues Hugo.The Prediction of Metro Shield Construction Cost Based on a Backpropagation Neural Network Improved by Quantum Particle Swarm Optimization[J].Advances in Civil Engineering,2020.
Study on Digital Control Model of Urban Rail Transit Civil Engineering Cost
Abstract: On the basis of analyzing the construction cost composition,control mechanism and control method of urban rail transit civil engineering cost,puts forward the idea of digital control model of urban rail transit civil engineering cost.Firstly,builds the BIM5D information database,then constructs the cost prediction model based on BP neural network and cost warning model based on earned value method,and uses the fuzzy hierarchy method to identify the key influencing factors of civil construction cost.Finally,verifies the effectiveness of the digital control model by the case application of Chengdu rail transit Line 27.It provides reference for urban rail transit civil construction cost control.
Keywords: civil engineering cost control; BIM5D; BP neural network; earned value method; fuzzy hierarchy method
865
0
0