某超限高层塔楼结构设计与重要部位专项分析
摘要:眉山58号地块项目1#塔楼采用钢筋混凝土框架-核心筒结构体系,结构高度141.60m,为B级高度的超高层建筑。为了满足建筑功能和立面造型的需要,在结构相应位置设置了穿层柱、斜柱和牛腿柱。通过SATWE和MIDAS Building两种软件对结构进行了多遇地震下的反应谱分析,并借助SATWE软件进行弹性时程分析作为补充验算。采用SATWE软件对结构进行了等效弹性分析,保证主要构件满足设防地震和罕遇地震作用下的抗震性能化设计目标。运用SAUSAGE软件对结构进行了罕遇地震下的动力弹塑性时程分析,以保证结构“大震不倒”。基于MIDAS Gen和ABAQUS等软件对穿层柱、斜柱和牛腿柱进行了专项分析,确保了重要部位的安全性。结果表明,结构具有良好的抗震性能,能达到预设的C级抗震性能目标。
关键词:超高层建筑;框架-核心筒结构;抗震性能化设计;动力弹塑性时程分析;专项分析;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 建筑工程抗震设防分类标准:GB 50223—2008[S].北京:中国建筑工业出版社,2008.
[2] 建筑结构可靠性设计统一标准:GB 50068—2018[S].北京:中国建筑工业出版社,2019.
[3] 超限高层建筑工程抗震设防专项审查技术要点:建质[2015]67号[A].北京:中华人民共和国住房和城乡建设部,2015.
[4] 四川省抗震设防超限高层民用建筑工程界定标准:DB51/T5058-2020[S].成都:西南交通大学出版社,2021.
[5] 赵仕兴,杨姝姮,陈可.有关建筑结构平面规则性的若干问题讨论[J].建筑结构,2021,51(3):47-50.
[6] 赵仕兴,杨姝姮,唐元旭,等.有关建筑结构竖向规则性的若干问题讨论[J].建筑结构,2022,52(17):14-18,4.
[7] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[8] 混凝土结构设计规范:GB 50010—2010[S].2015年版.北京:中国建筑工业出版社,2011.
[9] 唐九如.钢筋混凝土框架节点抗震设计[J].工业建筑,1988(3):44-50.
[2] 建筑结构可靠性设计统一标准:GB 50068—2018[S].北京:中国建筑工业出版社,2019.
[3] 超限高层建筑工程抗震设防专项审查技术要点:建质[2015]67号[A].北京:中华人民共和国住房和城乡建设部,2015.
[4] 四川省抗震设防超限高层民用建筑工程界定标准:DB51/T5058-2020[S].成都:西南交通大学出版社,2021.
[5] 赵仕兴,杨姝姮,陈可.有关建筑结构平面规则性的若干问题讨论[J].建筑结构,2021,51(3):47-50.
[6] 赵仕兴,杨姝姮,唐元旭,等.有关建筑结构竖向规则性的若干问题讨论[J].建筑结构,2022,52(17):14-18,4.
[7] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[8] 混凝土结构设计规范:GB 50010—2010[S].2015年版.北京:中国建筑工业出版社,2011.
[9] 唐九如.钢筋混凝土框架节点抗震设计[J].工业建筑,1988(3):44-50.
Structural design and special analysis of important parts of an out-of-code high-rise building tower
Abstract: Tower 1 of Meishan 58 Plot project adopts reinforced concrete frame-core tube structure system, with a structural height of 141.60m, which is a super high-rise building with B-level height. In order to meet the needs of building function and facade modeling, some cross-story columns, an inclined column and a cow-leg pillar were set in the corresponding position of the structure. By using SATWE and MIDAS Building software, the response spectrum analysis of the structure under frequent earthquakes was carried out, and the elastic time history analysis was taken as a supplementary check by using SATWE software. The equivalent elastic analysis of the structure was carried out by SATWE software to ensure the performance-based seismic design objectives of the main components under fortification and rare earthquakes. The dynamic elastic-plastic time-history analysis of the structure under rare earthquakes was carried out by using SAUSAGE software, making sure that the structure won't collapse under rare earthquakes. Based on MIDAS Gen, ABAQUS and other software, special analysis of the cross-story columns, the inclined column and the cow-leg pillar were taken to ensure the safety of important parts. The results show that the structure has good seismic performance and can reach the preset C class seismic performance target.
Keywords: super high-rise building; frame-core tube structure; performance-based seismic design; dynamic elastic-plastic time-history analysis; special analysis
828
1
1