轴压荷载下中空夹层钢管混凝土抗扭性能试验研究
摘要:以轴压比及截面尺寸为参数,对12个中空夹层钢管混凝土试件进行压-扭试验,并结合数值模型分析了扭转全过程截面剪应变开展及钢管与夹层混凝土相互作用力。结果表明:较小的轴向压力对极限抗扭承载力及扭转刚度均影响甚微,所有试件均表现出较好的延性。承载力受外钢管强度影响较大,受混凝土强度影响较小,夹层混凝土对组合抗扭强度提高的作用随含钢率的增大而减小。扭转全过程截面不同位置处应变开展曲线重合度高,表明全截面约束均匀且变形一致。夹层混凝土剪应力随着与截面中心距离的增大而增大,外钢管与夹层混凝土相互作用力相较于内钢管要大得多,二者均表现为加载初期增长较快,随后逐渐变缓,外钢管屈服后增幅趋近于0。
关键词:中空夹层钢管混凝土,压-扭试验,轴压比,抗扭性能,含钢率,约束效应
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] DING FAXING,FU QIANG,WEN BING,et al.Behavior of circular concrete-filled steel tubular columns under pure torsion[J].Steel and Composite Structures,2018,26(4):501-511.
[2] DING FAXING,SHENG SHIJING,YU YUJIE,et al.Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion[J].Steel and Composite Structures,2019,31(3):291-301.
[3] 黄宏,郭晓宇,陈梦成.圆中空夹层钢管混凝土压扭构件试验研究[J].实验力学,2015,30(1):101-109.
[4] 黄宏,郭晓宇,陈梦成.圆钢管再生混凝土轴压短柱对比试验研究[J].建筑结构,2016,46(4):34-39,49.
[5] 吴丽珠,朱琪,黄宏,等.方中空夹层钢管混凝土压弯扭构件承载力计算方法探讨[J].南昌大学学报(工科版),2015,37(3):257-261.
[6] WANG YUHANG,LU GUOBING,ZHOU XUHONG.Experimental study of the cyclic behavior of concrete-filled double skin steel tube columns subjected to pure torsion[J].Thin-Walled Structures,2018,122(1):425-438.
[7] 聂建国,王宇航,樊健生.用于分析钢管混凝土柱在轴力-扭矩复合作用下非线性反应的“分层筒”模型[J].土木工程学报,2013,46(1):16-23.
[8] WANG YUHANG,GUO YIFAN,LIU JIEPENG,et al.Experimental study on torsion behavior of concrete filled steel tube columns subjected to eccentric compression[J].Journal of Constructional Steel Research,2017,129(2):119-128.
[9] 王宇航,郭一帆,刘界鹏,等.偏压荷载下钢管混凝土柱的抗扭性能试验研究[J].土木工程学报,2017,50(7):50-61.
[10] 王宇航,王雨嫣,胡少伟.海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J].工程力学,2019,36(8):96-105.
[11] NIE XIN,WANG YUHANG,LI SHUO,et al.Coupled bending-shear-torsion bearing capacity of concrete filled steel tube short columns[J].Thin-Walled Structures,2018,123(2):305-316.
[12] 王宇航,聂建国,樊健生.矩形钢管混凝土柱在扭矩作用下的截面剪应变场研究[J].工程力学,2014,31(5):101-108.
[13] WANG YUHANG,NIE JIANGUO,FAN JIANSHENG.A new model for analyzing nonlinear torsion behavior of concrete filled steel tube columns with rectangular section[J].Earthquake Engineering and Engineering Vibration,2016,15(2):269-282.
[14] 王秋维,刘乐,史庆轩,等.钢管活性粉末混凝土界面粘结强度计算方法研究[J].工程力学,2020,37(4):41-50.
[15] 李小刚,童根树.考虑抗滑移刚度的钢管混凝土柱的荷载传递[J].工程力学,2017,34(11):89-101.
[16] 廖飞宇,韩浩,王宇航.带环向脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能研究[J].土木工程学报,2019,52(7):57-68.
[17] 张伟杰,廖飞宇,李威.带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J].工程力学,2019,36(12):121-133.
[18] CHEN BAOCHUN,SHENG YE,FAM AMIR,et al.Torsional behavior of a new dumbbell-shaped concrete-filled steel tubes[J].Thin-Walled Structures,2017,110(1):35-46.
[19] HUANG HONG,HAN LINHAI,ZHAO XIAOLIN.Investigation on concrete filled double skin steel tubes (CFDSTs)under pure torsion[J].Journal of Constructional Steel Research,2013,90(11):221-234.
[20] 韩林海.钢管混凝土结构——理论与实践[M].第3版.北京:科学出版社,2016.
[21] 任志刚,张铭,刘闯,等.圆端形钢管混凝土中长柱轴心受压承载性能试验研究[J].建筑结构,2021,51(14):62-68.
[2] DING FAXING,SHENG SHIJING,YU YUJIE,et al.Mechanical behaviors of concrete-filled rectangular steel tubular under pure torsion[J].Steel and Composite Structures,2019,31(3):291-301.
[3] 黄宏,郭晓宇,陈梦成.圆中空夹层钢管混凝土压扭构件试验研究[J].实验力学,2015,30(1):101-109.
[4] 黄宏,郭晓宇,陈梦成.圆钢管再生混凝土轴压短柱对比试验研究[J].建筑结构,2016,46(4):34-39,49.
[5] 吴丽珠,朱琪,黄宏,等.方中空夹层钢管混凝土压弯扭构件承载力计算方法探讨[J].南昌大学学报(工科版),2015,37(3):257-261.
[6] WANG YUHANG,LU GUOBING,ZHOU XUHONG.Experimental study of the cyclic behavior of concrete-filled double skin steel tube columns subjected to pure torsion[J].Thin-Walled Structures,2018,122(1):425-438.
[7] 聂建国,王宇航,樊健生.用于分析钢管混凝土柱在轴力-扭矩复合作用下非线性反应的“分层筒”模型[J].土木工程学报,2013,46(1):16-23.
[8] WANG YUHANG,GUO YIFAN,LIU JIEPENG,et al.Experimental study on torsion behavior of concrete filled steel tube columns subjected to eccentric compression[J].Journal of Constructional Steel Research,2017,129(2):119-128.
[9] 王宇航,郭一帆,刘界鹏,等.偏压荷载下钢管混凝土柱的抗扭性能试验研究[J].土木工程学报,2017,50(7):50-61.
[10] 王宇航,王雨嫣,胡少伟.海洋结构CFRP环向约束钢管混凝土柱在压弯扭荷载下的力学性能研究[J].工程力学,2019,36(8):96-105.
[11] NIE XIN,WANG YUHANG,LI SHUO,et al.Coupled bending-shear-torsion bearing capacity of concrete filled steel tube short columns[J].Thin-Walled Structures,2018,123(2):305-316.
[12] 王宇航,聂建国,樊健生.矩形钢管混凝土柱在扭矩作用下的截面剪应变场研究[J].工程力学,2014,31(5):101-108.
[13] WANG YUHANG,NIE JIANGUO,FAN JIANSHENG.A new model for analyzing nonlinear torsion behavior of concrete filled steel tube columns with rectangular section[J].Earthquake Engineering and Engineering Vibration,2016,15(2):269-282.
[14] 王秋维,刘乐,史庆轩,等.钢管活性粉末混凝土界面粘结强度计算方法研究[J].工程力学,2020,37(4):41-50.
[15] 李小刚,童根树.考虑抗滑移刚度的钢管混凝土柱的荷载传递[J].工程力学,2017,34(11):89-101.
[16] 廖飞宇,韩浩,王宇航.带环向脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能研究[J].土木工程学报,2019,52(7):57-68.
[17] 张伟杰,廖飞宇,李威.带圆弓形脱空缺陷的钢管混凝土构件在压弯扭复合受力作用下的滞回性能试验研究[J].工程力学,2019,36(12):121-133.
[18] CHEN BAOCHUN,SHENG YE,FAM AMIR,et al.Torsional behavior of a new dumbbell-shaped concrete-filled steel tubes[J].Thin-Walled Structures,2017,110(1):35-46.
[19] HUANG HONG,HAN LINHAI,ZHAO XIAOLIN.Investigation on concrete filled double skin steel tubes (CFDSTs)under pure torsion[J].Journal of Constructional Steel Research,2013,90(11):221-234.
[20] 韩林海.钢管混凝土结构——理论与实践[M].第3版.北京:科学出版社,2016.
[21] 任志刚,张铭,刘闯,等.圆端形钢管混凝土中长柱轴心受压承载性能试验研究[J].建筑结构,2021,51(14):62-68.
Experimental study on torsional behavior of concrete-filled double skin steel tubes under axial load
Abstract: With the axial compression ratio and section size as parameters, the compression-torsion test of 12 concrete-filled double skin steel tube specimens was carried out, and the cross-section shear strain development during the whole torsion process and the interaction force between the steel tube and the sandwich concrete were analyzed combined with the numerical model. The results show that the small axial pressure has little effect on the ultimate torsional bearing capacity and torsional stiffness, and all the specimens show good ductility. The bearing capacity is greatly affected by the strength of the outer steel tube and less by the strength of the concrete, and the effect of sandwich concrete on the improvement of the combined torsional strength decreases with the increase of the steel ratio. The strain development curve at different positions of the cross section during the whole torsion process has a high degree of overlap, which indicates that the full cross section has uniform constraints and uniform deformation. And the shear stress of the sandwich concrete increases with the distance from the center of the cross section. The interaction force between the outer steel tube and the sandwich concrete is much larger than that of the inner steel tube, both of which show a rapid increase in the initial loading and a gradual slowdown later, and the increase rate is close to 0 after outer steel tube yielding.
Keywords: concrete-filled double skin steel tube; compression-torsion test; axial compression ratio; torsional behavior; steel ratio; restraint effect
715
0
0