考虑现浇楼板影响的RC框架梁板柱协同抗连续性倒塌非线性有限元分析

作者:贾益纲 詹鸣晨 吴光宇 敖居明 王惠宾
单位:南昌大学设计研究院 ,南昌大学建筑工程学院
摘要:为深入考察现浇楼板对RC框架结构抗连续性倒塌性能的影响,先对一2层带板框架静力坍塌试验进行仿真模拟,校核三维实体退化虚拟层合单元模拟分析法的准确性;通过对比空间4层框架底层有无楼板的情况,分析了结构在底层为独立梁格状态和肋梁楼盖状态下倒塌过程中的破坏形态与钢筋应力变化,得出肋梁楼盖结构中贯通梁因梁板协同效应并未像在独立梁格中触发“悬链线”机制;通过改变该空间框架底层板厚的情况,分析了不同板厚模型连续倒塌过程中不同的破坏形态与抗力表现,发现各模型贯通梁格区楼板均以失效柱为中心呈“花瓣形”薄膜受拉状态,随板厚增加薄膜受拉区逐渐回拢,应力等值线渐变稀疏,结构承载力相应提高。
关键词:RC框架结构,连续性倒塌,三维实体退化虚拟层合单元,悬链线机制,花瓣形拉力膜
作者简介:贾益纲,硕士,教授,博士生导师,主要从事混凝土结构设计理论及大型复杂结构防灾减灾研究,Email:jiayigang999@sina.com。吴光宇,博士,教授级高级工程师,主要从事复杂结构非线性仿真分析及设计理论研究,Email:wuguangyu@ncu.edu.cn。
基金:国家自然科学基金研究计划项目(51268044)。 -页码-:61-68
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] Minimum design loads for buildings and other structures:ASCE/SEI 7-10[S].New York:American Society of Civil Engineers,2010.
[2] Eurocode 1:actions on structures:BS EN 1991-1-7∶2006[S].London:British Standards Institution,2006.
[3] STEVENS D,CROWDER B,SUNSHINE D,et al.DoD research and criteria for the design of buildings to resist progressive collapse[J].Journal of Structural Engineering,2011,137(9):870-880.
[4] 《建筑结构抗倒塌设计规范》(CECS 392∶2014)颁布实施[J].建筑结构,2015,45(9):10.
[5] 何庆锋,刘义仁,蒋曲翀,等.锤击作用下钢筋混凝土框架倒塌性能试验研究[J].湖南大学学报(自然科学版),2015,42(1):40-46.
[6] 李易,陆新征,叶列平,等.混凝土框架结构火灾连续倒塌数值分析模型[J].工程力学,2012,29(4):96-103.
[7] 李晓路,李寰,方士超,等.RC框架结构梁板柱空间协同抗连续性倒塌非线性有限元分析[J].建筑结构,2017,47(21):67-72.
[8] 周云,陈太平,胡翔,等.考虑周边结构约束影响的 RC框架结构防连续倒塌性能研究[J].工程力学,2019,36(1):216-237.
[9] QIAN K,LI B,MA J X.Load-carrying mechanism to resist progressive collapse of RC buildings[J].Journal of Structural Engineering,2015,141(2):4014107-1-4014107-14.
[10] YU J,LUO L Z,LI Y.Numerical study of progressive collapse resistance of RC beam-slab substructures under perimeter column removal scenarios[J].Engineering Structures,2018,159(1):14-27.
[11] 凌道盛,张金江,项贻强,等.虚拟层合单元法及其在桥梁工程中的应用[J].土木工程学报,1998,31(3):22-29.
[12] 凌道盛,徐兴.非线性有限元及程序[M].杭州:浙江大学出版社,2004.
[13] 吴光宇,汪劲丰,项贻强,等.三维实体退化虚拟层合梁单元在钢曲梁极限承载力分析中的应用[J].工程力学,2006,23(S1):134-139.
[14] LIU P C,JIA Y G,WU G Y,et al.Nonlinear simulation analysis of RC frame beam slab column spatial synergy against progressive collapse performance under failure of bottom corner columns[J].IOP Conferences Series:Earth and Enviromental Science,2019,233(3):032033.
[15] 陈惠发,萨里普 A F.混凝土和土的本构方程[M].余天庆,王勋文,刘西拉,等译.北京:中国建筑工业出版社,2004.
[16] 宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002.
[17] WANG T C,CHEN Q W,ZHAO H L,et al.Experimental study on progressive collapse performance of frame with specially shaped columns subjected to middle column removal[J].Shock and Vibration,2016:1-13.
[18] BERGAN P G,HOLAND I,SOREIDE T H.Use of current stiffness parameter in solution of nonlinear problems,energy methods in finite element analysis[M].Hoboken:John Wiley&Sons,1979:265-282.
Nonlinear finite element analysis on beam-slab-column synergistic progressive collapse resistance of RC frame considering the effect of cast-in-place slabs
JIA Yigang ZHAN Mingchen WU Guangyu AO Juming WANG Huibin
(Design and Research Institute, Nanchang University School of Civil Engineering and Architecture, Nanchang University)
Abstract: In order to deeply investigate the effect of cast-in-place slabs on the performance of RC frame structure against progressive collapse, the accuracy of the simulation analysis method based on degenerated 3 D solid virtual lamination element was verified first through the simulation of the static collapse test of a two-story frame with slabs. By comparing situations whether there were floor slabs on the ground floor of a spacial 4-story frame, the failure form and the stress change of steel rebars during the collapse process of the structure when the ground floor was a beam-only grid or a ribbed-beam floor were discussed, and it was concluded that the through-beam in the ribbed-beam floor had not triggered “catenary” mechanism like in the beam-only grid floor due to the beam-slab synergistic effect. By changing the slab thickness on the ground floor of the spacial frame, the failure form and resistance performance of models with different slab thickness were analyzed, it was found that slabs within the through-beam lattice area of each model were in a “petal-shaped” tensile membrane action centered on the failed column; with the increase of slab thickness, the tensile membrane zone gradually converges, the stress contours gradually became sparse and the structural bearing capacity increases accordingly.
Keywords: RC frame structure; progressive collapse; degenerated 3D solid virtual lamination element; catenary mechanism; petal-shaped tensile membrane
724 0 0
文字:     A-     A+     默认 取消