温度敏感Thermo-TRP通道结合人体生理指标在室内热环境营造中的应用探索

作者:李百战 姚润明 杜晨秋 刘红 杨旭 喻伟
单位:重庆大学 华中师范大学
摘要:营造舒适健康室内热环境,提升建筑环境品质,满足人们对美好生活的追求,同时尽可能实现建筑节能减碳,是建筑绿色低碳发展的必然要求。如何确定室内热环境舒适区间,保障人员健康安全的室内热环境如何设计,由于传统热环境设计和舒适评价主要依靠主观问卷,缺少科学量化的回答,尤其是一直欠缺对人体热舒适和人员热健康的客观度量。笔者及其课题组从建筑室内热环境绿色营造的工程问题出发,通过选择表征人体热舒适敏感的生理指标,实现人体热舒适从主观评价到科学度量的根本转变,解决了人体热舒适客观度量的科学问题;进而引入分子生物学研究手段和生化指标测量,探索了温度敏感瞬时受体通道Thermo-TRP(thermal sensitive transient receptor potential)在不同温度暴露下的激活和响应特性,确定了人体舒适温度区间和健康安全阈值。人体生理热调节是营造室内舒适健康热环境的基础,而分子生物学从微观层面揭示机体调节机理,两者的有机结合可以弥补建筑环境中对人体热舒适机理认识不足和热环境参数设计健康安全阈值不明确的不足,为建筑环境领域引入学科交叉研究方法、应用基础科学成果解决实际工程问题提供新的研究思路和案例示范。
关键词:暖通空调设计温度敏感瞬时受体通道Thermo-TRP)人体生理指标室内热环境人体热舒适热健康
作者简介:李百战,男,1957年生,博士,教授400045重庆市沙坪坝区沙正街174号重庆大学B区土木工程学院E-mail:baizhanli@cqu.edu.cn;
基金:国家自然科学基金项目(编号:51908079);重庆市自然科学基金项目(编号:cstc2021ycjh-bgzxm0156);
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] NICOL J F,HUMPHREYS M A.Thermal comfort as part of a self-regulating system[J].Building research and practice,1973,1(3):174- 179.

[2] 姚润明.室内气候模拟及热舒适研究[D].重庆:重庆建筑大学,1997:94- 100.

[3] DE DEAR R J,BRAGER G S.Developing an adaptive model of thermal comfort and preference[G]//ASHRAE.ASHRAE Transactions 1998:part 1.Atlanta:ASHRAE Inc.,1998:145- 167.

[4] HUMPHREYS M A,NICOL J F.The validity of ISO-PMV for predicting comfort votes in every-day thermal environments[J].Energy and buildings,2002,34(6):667- 684.

[5] YAO R M,LI B Z,LIU J.A theoretical adaptive model of thermal comfort:adaptive predicted mean vote (aPMV)[J].Building and environment,2009,44(10):2089- 2096.

[6] 重庆大学,中国建筑科学研究院.民用建筑室内热湿环境评价标准:GB/T 50785—2012[S].北京:中国建筑工业出版社,2012:8.

[7] GAGGE A P,STOLWIJK J A,SALTIN B.Comfort and thermal sensations and associated physiological responses during exercise at various ambient temperatures[J].Environmental research,1967,1(1):1- 20.

[8] FIALA D,LOMAS K J,STOHRER M.First principles modeling of thermal sensation responses in steady-state and transient conditions[G]//ASHRAE.ASHRAE Transactions 2002:part 1.Atlanta:ASHRAE Inc.,2002:179- 186.

[9] ZHANG H,ARENS E,HUIZENGA C.Thermal sensation and comfort models for non-uniform and transient environments,part III:whole-body sensation and comfort[J].Building and environment,2010,45:399- 410.

[10] ZHANG H,ARENS E,HUIZENGA C,et al.Thermal sensation and comfort models for non-uniform and transient environments,part II:local comfort of individual body parts[J].Building and environment,2010,45(2):389- 398.

[11] ZHAO R Y.Investigation of transient thermal environments[J].Building and environment,2007,42(12):3926- 3932.

[12] RING J W,DE DEAR R,MELIKOV A.Human thermal sensation:frequency response to sinusoidal stimuli at the surface of the skin[J].Energy and buildings,1993,20(2):159- 165.

[13] LIU H,LIAO J K,YANG D,et al.The response of human thermal perception and skin temperature to step-change transient thermal environments[J].Building and environment,2014,73(5):232- 238.

[14] 刘红.重庆地区建筑室内动态环境热舒适研究[D].重庆:重庆大学,2009:56- 81.

[15] 徐小林.重庆夏季室内热环境对人体生理指标及热舒适的影响研究[D].重庆:重庆大学,2008:47- 67.

[16] 陈露.夏热冬冷地区室内热环境与人体热舒适及热健康的关系研究[D].重庆:重庆大学,2006:63- 96.

[17] 陈良.室内热湿环境对人体生理及热舒适影响的实验研究[D].重庆:重庆大学,2007:57- 87.

[18] 曹晓庆.影响室内热舒适参数的理论与实验研究[D].重庆:重庆大学,2008:21- 55.

[19] 李文杰.建筑室内自然环境下基于生理-心理的人体热舒适研究[D].重庆:重庆大学,2010:43- 75.

[20] 李百战,杨旭,陈明清,等.室内环境热舒适与热健康客观评价的生物实验研究[J].暖通空调,2016,46(5):94- 100.

[21] LI B Z,DU C Q,LIU H,et al.Regulation of sensory conduction velocity of human bodies responding to annual temperature variation in natural environment[J].Indoor air,2019,29:308- 319.

[22] DHAKAA,VISWANATH V,PATAPOUTIAN A.TRP ion channels and temperature sensation[J].Annual review of neuroscience,2006,29(1):135- 161.

[23] 杜晨秋.环境温度变化对人体热调节和健康影响及其分子机理研究[D].重庆:重庆大学,2018:103- 117.

[24] 李超.相对湿度及其动态变化对人体热舒适的影响研究[D].重庆:重庆大学,2018:43- 57.

[25] BESSACB F,JORDT S E.Breathtaking TRP channels:TRPA1 and TRPV1 in airway chemosensation and reflex control[J].Physiology,2008,23(6):360- 370.

[26] NASSENSTEIN C,KWONG K,TAYLORCLARK T,et al.Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs[J].Journal of physiology,2008,586(6):1595- 1604.

[27] DU C Q,KANG J,YU W,et al.Repeated exposures to temperature variation exacerbate the airway inflammations through TRPA1 in a mouse asthma model[J].Respiralogy,2019,24(3):238- 245.

[28] 北京城建设计研究总院有限责任公司,中国地铁工程咨询有限责任公司.地铁设计规范:GB 50175—2013[S].北京:中国建筑工业出版社,2013:123.

[29] SHERWOODS C,HUBER M.An adaptability limit to climate change due to heat stress[J].Proceedings of the National Academy of Sciences,2010,107(21):9552- 9555.

[30] 贾洪愿,李百战,姚润明,等.探讨长江流域室内热环境营造:基于建筑热过程的分析[J].暖通空调,2019,49(4):1- 11.

[31] PARSONS K C.Human thermal environments:the effect of hot,moderate and cold environments on human health,comfort and performance[M].London:Taylor and Francis,2014:79- 99.

[32] Press release:the Nobel Prize in physiology or medicine 2021[EB/OL].[2022-01-04].https://www.nobelprize.org/prizes/medicine/2021/press-release/.

[33] CAO E,CORDEO-MORALES J F,LIU B,et al.TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids[J].Neuron,2013,77(4):667- 679.

[34] WU Y X,DUAN J F,LI B Z,et al.Exposure to formaldehyde at low temperatures aggravates allergic asthma involved in transient receptor potential ion channel[J].Environmental toxicology and pharmacology,2020,80(6):103469.

[35] DUAN J F,XIE J,DENG T,et al.Exposure to both formaldehyde and high relative humidity exacerbates allergic asthma by activating the TRPV4-p38 MAPK pathway in Balb/c mice[J].Environmental pollution,2020,256:113375.
Application exploration of thermal sensitive physiological indices and Thermo-TRP channels for building indoor comfortable and healthy environments
Li Baizhan Yao Runming Du Chenqiu Liu Hong Yang Xu Yu Wei
(Chongqing University Central China Normal University)
Abstract: Improving the health and comfort of building environments and achieving energy efficiency and carbon emission reduction without compromising the quality of the living environments is an inevitable requirement for the development of energy efficient and intelligent buildings in the future. However, how to define a comfortable environment and how to design parameters to ensure the people health and safety in indoors, relying only on the traditional subjective thermal comfort evaluation in buildings is not sufficient. Starting from the engineering problems, the study provides a scientific method for quantifying human thermal comfort based on large sample measurements on human sensitive physiological indices. Through introducing the molecular biological research and exploring the thermal sensitive Thermo-TRP channels, the study answers the engineering questions of comfort zone and safety thresholds. Understanding the physiological and thermal regulation of human body is the basis for the creation of indoor thermal environments, while molecular biology provides the molecular mechanism of temperature sensation at the micro level. This work is of benefit to understanding mechanism and design parameter in engineering practice and application. It provides a new insight and better basis for introducing interdisciplinary research methods into the field of building environment and applying basic scientific achievements to solve practical engineering problems.
Keywords: HVAC design; thermal sensitive transient receptor potential(Thermo-TRP); human physiological response; indoor thermal environment; human thermal comfort; thermal health;
837 0 0
文字:     A-     A+     默认 取消