含UHPC薄层的新型栓钉组合剪力键抗拔性能试验研究

引用文献:

吕伟荣, 马慧心, 卢倍嵘, 周卿祺, 赵思钛, 刘福财, 戚菁菁. 含UHPC薄层的新型栓钉组合剪力键抗拔性能试验研究[J]. 建筑结构,2023,48(05):141-147.

LÜ Weirong, MA Huixin, LU Beirong ,ZHOU Qingqi ,ZHAO Sitai, LIU Fucai ,QI Jingjing. Experimental study on the pull-out performance of a new stud combined shear connector with UHPC thin layer[J]. Building Structure,2023,48(05):141-147.

作者:吕伟荣, 马慧心, 卢倍嵘, 周卿祺, 赵思钛, 刘福财, 戚菁菁
单位:湖南科技大学土木工程学院, 广东盖特奇新材料科技有限公司
摘要:基于超高性能混凝土(ultra-high performance concrete,简称为UHPC)良好的受力性能,提出了一种由钢板-UHPC薄层-普通混凝土叠合而成的新型栓钉组合剪力键,用于增强基础环式风力机基础中基础环与混凝土间的界面抗拔能力。通过对1:3缩尺模型进行了3组共9个静力拔出试验,研究了UHPC薄层厚度对新型栓钉组合剪力键的荷载-滑移曲线、破坏形态及极限承载能力的影响。结果表明,整个受力过程可经历4个阶段,即界面间摩擦传力弹性阶段、栓钉受剪弹性和弹塑性阶段、混凝土受拉破坏阶段。UHPC薄层的加入,栓钉不仅在钢板与UHPC薄层界面(简称第一界面)即栓钉根部出现了塑性,同时在UHPC薄层-普通混凝土交界面(简称第二界面)上亦出现了明显的塑性,使得新型栓钉组合剪力键抗剪刚度及承载力均较普通栓钉剪力键有显著提高。同时栓钉根部剪应力峰值明显降低,有效提高了剪力键的抗拔性能。基于试验结果,提出了基于双界面栓钉屈服的新型栓钉组合剪力键抗拔承载力计算公式。对比结果表明,该公式能较好反映UHPC薄层厚度对承载力的贡献。
关键词:UHPC薄层;栓钉;风力机基础;组合剪力键;拔出试验;
作者简介:吕伟荣,博士,教授,主要从事钢-混组合结构、砌体结构、工程抗震研究,Email:lwrxm@126.com。
基金:国家自然科学基金面上项目(51578235);湖南省自然科学基金项目面上项目(2021JJ30261);湖南省教育厅重点项目(20A184)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] ESTEBAN M D,COUÑAGO B,LÓPEZ-GUTIÉRREZ J S,et al.Gravity based support structures for offshore wind turbine generators:review of the installation process[J].Ocean Engineering,2015,110:281-291.
[2] 吕伟荣,朱峰,卢倍嵘,等.风机基础开孔板连接件剪切受力机理试验研究[J].工程力学,2018,35(7):127-138.
[3] 黄冬平,何桂荣.风力发电塔基础预应力锚栓的抗疲劳性能研究[J].特种结构,2011,28(5):13-15.
[4] 康明虎,徐慧,黄鑫.基础环形式风机基础局部损伤分析[J].太阳能学报,2014,35(4):583-588.
[5] 马人乐,黄冬平.风电结构亚健康状态研究[J].特种结构,2014,31(4):1-4.
[6] 吕伟荣,何潇锟,卢倍嵘,等.插环式风机基础疲劳损伤机理研究[J].建筑结构学报,2018,39(9):140-148.
[7] ALONSO T R,ENRIQUE GONZALEZ DUEAS.Cracks analysis in onshore wind turbine foundations[J].IABSE Symposium Report,2014,102(23):1086-1092.
[8] 马人乐,孙永良,黄冬平.风力发电塔基础设计改进研究[J].结构工程师,2009,25(5):93-97.
[9] 马人乐,刘恺,黄冬平.反向平衡法兰试验研究[J].同济大学学报(自然科学版),2009,37(10):1333-1339.
[10] BACHYNSKI E E,MOAN T.Design considerations for tension leg platform wind turbines[J].Marine Structures,2012,29(1):89-114.
[11] ERIC VAN BUREN,MICHAEL MUSKULUS.Improving pile foundation models for usein bottom-fixed off shore wind turbine applications[J].Energy Procedia,2012,24:363-370.
[12] 孔德伟.风机基础钢环与混凝土锚固机理分析与试验[M].湘潭:湖南科技大学,2012.
[13] 李艳慧.风电基础混凝土与钢环粘结应力传递试验及分析[D].湘潭:湖南科技大学,2012.
[14] 白雪,何敏娟,马人乐,等.风力发电塔预埋塔筒基础健康监测[J].太阳能学报,2017,38(7):1979-1986.
[15] 吕伟荣,钟传旗,彭柱,等.风力机塔筒顶升纠偏机理研究与应用[J].太阳能学报,2021,42(6):272-279.
[16] 廖继彪,吕伟荣,卢倍嵘,等.基于两点测站的风力机塔筒倾斜测量方法研究[J].太阳能学报,2021,42(12):126-133.
[17] 李嘉,杨波,邵旭东,等.钢桥面-薄层CRRPC组合结构栓钉连接件抗剪疲劳性能研究[J].土木工程学报,2016,49(6):67-75.
[18] NASRIN S,IBRAHIM A.Flexural response of Ultra-High-Performance Concrete (UHPC)hybrid bridge deck connections made with local materials[J].Construction and Building Materials,2021,270:121451.
[19] 吕伟荣,周卿祺,卢倍嵘,等.一种风力发电机组基础环:ZL201821393213.5 [P].2019-04-05.
[20] 聂建国.钢-混凝土组合梁结构:试验、理论与应用[M].北京:科学出版社,2005.
[21] 邵旭东,张瀚文,李嘉,等.钢-超薄UHPC轻型组合桥面短钢筋连接件抗剪性能研究[J].土木工程学报,2020,53(1):39-51.
[22] 聂建国,李一昕,陶慕轩,等.新型抗拔不抗剪连接件抗拔性能试验[J].中国公路学报,2014,27(4):38-45.
[23] 赵根田,曹亚楠,贾然,等.单调及重复荷载作用下栓钉连接件抗拔性能试验研究[J].建筑结构学报,2019,40(S1):418-423.
[24] 钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2018.
Experimental study on the pull-out performance of a new stud combined shear connector with UHPC thin layer
LÜ Weirong, MA Huixin, LU Beirong ,ZHOU Qingqi ,ZHAO Sitai, LIU Fucai ,QI Jingjing
(Department of Civil Engineering, Hunan University of Science and Technology Guangdong Gateqi New Material Technology Co., Ltd.)
Abstract: Based on great mechanical performance of ultra-high performance concrete(UHPC), a new type of stud combined shear connector composed of steel plate, UHPC thin layer and ordinary concrete was proposed to strengthen the interface pulling ability between foundation ring and concrete. The effects of UHPC thin layer thickness on load-slip curve, failure modes and ultimate bearing capacity of the new stub composite shear connector were studied by using 3 sets of 9 static pull-out tests on the 1:3 scale model. The results show that the whole loading process can be divided into four stages, namely the elastic stage of friction force transfer between interfaces, the elastic and elastoplastic stages of stud shear, and the tensile failure stage of concrete. With the addition of UHPC thin layer, the studs not only appear plastic at the interface between steel plate and UHPC thin layer(referred to as the first interface) namely the root of the studs, but also appear obvious plastic at the interface between UHPC thin layer and ordinary concrete(referred to as the second interface), which makes the shear rigidity and bearing capacity of the new stub composite shear connector improve significantly than the ordinary stud shear stud. Meanwhile, the peak value of shear stress at the root of stud decreases obviously, which effectively improves the shear performance of the new stud composite shear connector. Based on the results of test, a formula according to the yield criterion for double interface studs for calculating the shear capacity of the new stub composite shear connector was put forward. The comparison results show that the formula can reflect the contribution of thickness of UHPC thin layer to the bearing capacity, and can be used for reference in practical engineering.
Keywords: UHPC thin layer; stud; wind turbine foundation; combined shear connector; uplift test
540 0 0
文字:     A-     A+     默认 取消