竖向分布钢筋不连接装配整体式剪力墙抗震性能有限元分析

引用文献:

曹志伟, 朱彤, 傅强 ,张士前, 廖显东. 竖向分布钢筋不连接装配整体式剪力墙抗震性能有限元分析[J]. 建筑结构,2023,48(05):12-18.

CAO Zhiwei ,ZHU Tong ,FU Qiang ,ZHANG Shiqian ,LIAO Xiong. Finite element analysis on seismic performance of monolithic assembled concrete shear wall with non-connected vertical distribution reinforcement[J]. Building Structure,2023,48(05):12-18.

作者:曹志伟, 朱彤, 傅强 ,张士前, 廖显东
单位:同济大学土木工程学院建筑工程系 中国建筑股份有限公司 中国建筑第八工程局有限公司
摘要:为解决装配整体式剪力墙竖向钢筋连接套筒灌浆存在的灌浆质量难保证、施工效率低等问题,提出了一种新型预制墙体竖向分布钢筋不连接装配整体式剪力墙结构(SGBL装配整体式剪力墙结构)体系。为确定SGBL装配整体式剪力墙最大设计轴压比限值和竖向分布钢筋断开后的设置需求,采用有限元数值模拟方法,考虑轴压比、竖向分布钢筋配筋率等参数,探究了各参数对SGBL装配整体式剪力墙抗震性能的影响。研究表明:与试验结果对比,精细化有限元模型合理;试件延性随轴压比增大显著降低,结合试验研究结果可取SGBL装配整体式剪力墙最大设计轴压比限值为0.5;竖向分布钢筋断开后,配筋率变化对剪力墙抗震性能影响较小,SGBL装配整体式剪力墙竖向分布钢筋可按照最小配筋率设置。
关键词:SGBL装配整体式剪力墙;竖向分布钢筋不连接;有限元分析;抗震性能;
作者简介:曹志伟,博士,工程师,主要从事装配式建筑构件设计、智能建造等方向研究,Email:czwcscec@163.com。
基金:国家自然科学基金(52078360);山东省重点研发计划课题:绿色智能建造和建筑工业化关键技术与成套设备(2021CXGC011205)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 肖绪文,曹志伟,刘星,等.我国建筑装配化发展的现状、问题与对策[J].建筑结构,2019,49(19):1-4,24.
[2] 曹万林,于传鹏,董宏英,等.不同构造双钢板组合剪力墙抗震性能试验研究[J].建筑结构学报,2013,34(S1):186-191.
[3] KRAMAR M,ISAKOVIC´T,FISCHINGERMC´Τ,FΙSCΗΙΝGERΜ.Seismic collapse risk of precast industrial buildings with strong connections[J].Earthquake Engineering & Structural Dynamics,2009,39(8):847-868.
[4] YEE A A.Social and environmental benefits of precast concrete technology[J].PCI Journal,2001,46(3):14-19.
[5] 亓立刚,李厂,刘亚男,等.竖向分布钢筋不连接装配整体式剪力墙结构设计与施工[J].建筑结构,2023,53(5):7-11,29.
[6] 肖绪文,曹志伟,刘星,等.竖向分布筋不连接装配整体式剪力墙抗震性能试验研究[J].建筑结构,2021,51(17):5-9,24.
[7] LIAO X D,ZHANG S Q,CAO Z W,et al.Seismic performance of a new type of precast shear walls with non-connected vertical distributed reinforcement[J].Journal of Building Engineering,2021,44:103219.
[8] XIAO X W,CAO Z W,ZHANG S Q,et al.Quasi-static test and strut-and-tie modeling of precast concrete shear walls with unconnected vertically distributed reinforcements[J].Structural Concrete,2021,22(4):2258-2271.
[9] 混凝土结构设计规范:GB 50010—2010[S].北京:中国建筑工业出版社,2011.
[10] 方自虎,甄翌,李向鹏.钢筋混凝土结构的钢筋滞回模型[J].武汉大学学报(工学版),2018,51(7):613-619.
[11] VECCHIO F J.Towards cyclic load modeling of reinforced concrete[J].ACI Structural Journal,1999,96(2):192-202.
[12] 方自虎,周海俊,赖少颖,等.循环荷载下钢筋混凝土ABAQUS粘结滑移单元[J].武汉大学学报(工学版),2014,47(4):527-531.
[13] RABBAT B G,RUSSELL H G.Friction coefficient of steel on concrete or grout[J].Journal of Structural Engineering,1985,111(3):505-515.
[14] MOHAMAD M E,IBRAHIM I S,ABDULLAH R.Finite element modeling of the interfacial behavior at surface roughness concrete without the projecting steel[J].International Journal of Advances in Mechanical and Civil Engineering,2017,3 (4):125-130.
[15] MOHAMAD M E,IBRAHIM I S,ABDULLAH R.Friction and cohesion coefficients of composite concrete-to-concrete bond[J].Cement and Concrete Composites,2015,56:1-14.
[16] Eurocode2:design of concrete structures—part 1:general rules and rules for buildings:DD E NV 1992-1-1[S].London:British Standards Institution,1992.
[17] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[18] 吴浩,吕西林,蒋欢军,等.预应力预制混凝土剪力墙抗震性能试验研究[J].建筑结构学报,2016,37(5):208-217.
Finite element analysis on seismic performance of monolithic assembled concrete shear wall with non-connected vertical distribution reinforcement
CAO Zhiwei ,ZHU Tong ,FU Qiang ,ZHANG Shiqian ,LIAO Xiong
(Department of Structural Engineering, College of Civil Engineering, Tongji University China State Construction Engineering Co., Ltd. China Construction Eighth Engineering Division Co., Ltd.)
Abstract: To eliminate the shortcomings such as quality difficult assurance and low construction efficiency in the grouting sleeve in monolithic assembled concrete shear wall with connected vertical distribution reinforcement, a new type of monolithic assembled concrete shear wall structure with non-connected vertical distribution reinforcement(SGBL monolithic assembly shear wall structure) was proposed. In order to determine the maximum design axial compression ratio of SGBL monolithic assembly shear wall and the setting requirements of vertically distributed reinforcement after disconnection, a finite element simulation method was used to explore the effect of parameters such as axial compression ratio and vertical distribution reinforcement ratio on seismic performance of SGBL monolithic assembly shear wall. The results show that the refined finite element model is reasonable when compared with the experimental results; the ductility of specimens decreases significantly with the increase of axial compression ratio, and combined with the experimental results, the maximum design axial compression ratio of SGBL monolithic assembly shear wall should be 0.5; the vertical distribution reinforcement ratio has limited influence on the seismic performance of SGBL monolithic assembly shear wall when vertical distribution reinforcements are disconnected, and the vertical distribution reinforcement ratio can be configured according to the minimum reinforcement ratio.
Keywords: SGBL monolithic assembly shear wall; non-connected vertical distribution reinforcement; finite element analysis; seismic performance
539 0 0
文字:     A-     A+     默认 取消