大跨钢-混凝土组合梁斜拉桥施工阶段受力性能分析

引用文献:

田引安. 大跨钢-混凝土组合梁斜拉桥施工阶段受力性能分析[J]. 建筑结构,2022,48(12):121-126.

TIAN Yin′an. Mechanical performance analysis of long-span steel-concrete composite beam cable-stayed bridge during construction[J]. Building Structure,2022,48(12):121-126.

作者:田引安
单位:中铁第一勘察设计院集团有限公司
摘要:为了研究大跨钢-混凝土组合梁斜拉桥在施工过程中主梁与主塔的内力及位移变化规律,以江西药都大桥为例,采用ANSYS软件建立三维精细化有限元模型,对此钢-混凝土组合梁斜拉桥进行了施工过程数值分析。计算结果表明:在主桥最大单悬臂状态、合龙和桥面铺装后,主梁与主塔的应力、变形均满足相关规范要求。考虑斜拉索自重影响,通过Ernst公式对斜拉索的弹性模量进行修正,分析了几何非线性对结构内力和变形的影响。分析结果表明:随着斜拉索长度的不断变长,垂度效应越来越明显,尤其跨中斜拉索之间的主梁弯矩受到的影响较大,施工到桥合龙阶段,相对考虑垂度效应,不考虑垂度效应时,塔根部主梁弯矩减小1.6%;结构大位移及P-δ效应对主梁跨中挠度影响不超过4%。
关键词:大跨钢-混凝土组合梁斜拉桥;施工过程;悬臂拼装;垂度效应;大位移效应;荷载-位移效应
作者简介:田引安,学士,高级工程师,主要从事道路总体设计、路线及互通设计、道桥工程方向的研究,Email:88404303@qq.com。
基金:山区浅滩跨江大跨度悬索桥关键技术研究(TFSH-HJ.B-KY-1903-039)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 林元培.斜拉桥[M].北京:人民交通出版社,1997.
[2] 聂建国,陶慕轩,吴丽丽,等.钢-混凝土组合结构桥梁研究新进展[J].土木工程学报,2012,45(6):110-122.
[3] 胡旭辉,杨申云,李郁林,等.组合梁斜拉桥施工最大单悬臂阶段抖振响应及减振研究[J].桥梁建设,2021,51(1):21-28.
[4] 周伟明.钢板组合梁桥钢梁及桥面板一体化架设施工技术[J].铁道建筑技术,2021,59(9):102-106.
[5] 谢馨,王东绪.江安二桥钢-混组合梁斜拉桥钢梁设计与研究[J].武汉理工大学学报,2021,43(1):74-79.
[6] 戴颖.组合梁斜拉桥主梁悬臂施工过程的体系转换分析[J].广东土木与建筑,2020,27(11):44-47.
[7] 李旭.组合梁斜拉桥主梁安装施工关键技术[J].公路,2021,66(8):170-174.
[8] 冯鑫.大跨双塔钢混组合梁斜拉桥施工控制技术研究[D].济南:山东大学,2020.
[9] 包文艳.混合梁斜拉桥施工阶段几何非线性静力分析[D].兰州:兰州交通大学,2012.
[10] 刘伟.大跨度钢-混叠合梁斜拉桥施工过程受力分析[D].成都:西南交通大学,2009.
[11] 李胜伟.钢-混组合梁斜拉桥施工过程受力性能及非线性影响分析[D].石家庄:石家庄铁道大学,2018.
[12] 马波.大跨径混合梁斜拉桥施工全过程分析[D].成都:西南交通大学,2009.
[13] PEDRO J J O,REIS A J.Nonlinear analysis of composite steel-concrete cable-stayed bridges[J].Engineering Structures,2010,32(9):2702-2716.
Mechanical performance analysis of long-span steel-concrete composite beam cable-stayed bridge during construction
TIAN Yin′an
(China Railway First Survey and Design Institute Group Co., Ltd.)
Abstract: In order to study the internal force and displacement variation law of main girder and main tower of long-span steel-concrete composite beam cable-stayed bridge during construction, taking Jiangxi Yaodu Bridge as an example, the three-dimensional refined finite element model was established by ANSYS software, and the construction process of the steel-concrete composite beam cable-stayed bridge was numerically analyzed. The calculation results show that after the maximum single cantilever state, closure and deck pavement of the main bridge, the stress and deformation of the main beam and the main tower meet the requirements of the relevant specifications. Considering the influence of self-weight of stay cable, the elastic modulus of stay cable was corrected by Ernst formula, and the influence of geometric nonlinearity on internal force and deformation of structure was analyzed. The analysis results show that the sag effect becomes more and more obvious with the continuous increase of the length of the stay cable, especially the bending moment of the main beam between the mid-span stay cables is greatly affected. When the construction reaches the closure stage of the bridge, the bending moment of the main beam at the root of the tower decreases by 1.6% compared with that considering the sag effect and without considering the sag effect. The influence of structural large displacement and P-δ effect on the mid-span deflection of the main beam is not more than 4%.
Keywords: steel-concrete composite beam cable-stayed bridge; construction process; cantilever erection; sag effect; large displacement effect; load-displacement effect
442 0 0
文字:     A-     A+     默认 取消