电压源型换流器多端直流输电系统的阶梯控制策略研究
摘要:基于多端直流输电系统的结构和电压源型换流器的控制原理, 设计了适于VSC-MT-DC系统的阶梯控制算法, 保证若线路或者换流站故障, 其中一端退出运行时系统能够迅速恢复稳定运行。基于PSCAD/EMTDC建立四端VSC-MTDC输电系统模型, 每端的三相电压源通过换流站连接高压直流输电线路, 四个换流端采用并联接线方式。仿真验证阶梯控制有效性, 并进行功率提升实验和故障仿真验证阶梯控制的可行性。
关键词:VSC-MTDC 阶梯控制 故障 仿真
尊敬的用户,本篇文章需要1元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1]文俊, 张一工, 韩民晓等.轻型直流输电——一种新一代的HVDC技术[J].电网技术, 2003, 27 (1) :47-51.
[2]Weixing Lu;Boon-Teck Ooi, Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC[J].Power Delivery IEEE Transactions on, 2003, 18 (1) :201-206.
[3]陈谦, 唐国庆, 潘诗锋.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力自动化设备, 2004, 24 (5) :10-14.
[4]Hongbo Jiang;Ekstrom, Ake, Multiterminal HVDC systems in urban areas of large cities[J].Power Delivery IEEE Transactions on, 1998, 13 (4) :1278-1284.
[5]Sakamoto, K.;Yajima, M.;Ishikawa, T.;Sugimoto, S.;Sato, T.;Abe, H., Development of a control system for a highperformance self-commutated AC/DC converter[J].Power Delivery IEEE Transactions on, 1998, 13 (1) :225-232.
[6]Seki, N., Field testing of 53 MVA three-terminal DC link between power systems using GTO converters[J].Power Engineering Society Winter Meeting, 2000, 4 (4) :2504-2508.
[7]阮思烨, 李国杰, 孙元章.多端电压源型直流输电系统的控制策略[J].电力系统自动化, 2009, 33 (12) :57-60.
[8]Beerten, J.;Van Hertem, D.;Belmans, R., VSC MTDC systems with a distributed DC voltage control-A power flow approach[J].Powertech IEEE Trondheim.2011:1-6.
[9] 陈谦.新型多端直流输电的运行与控制[D].东南大学.
[10]Hairong Chen, Chao Wang, Fan Zhang, Wulue Pan.Control Stratery Research of VSC Based Multi-terminal HVDC System[J].Power Systems Conference and Exposition, 2006:1986-1990.
[11]陈海荣, 徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化, 2006, 30 (19) :28-33.
[12]丁涛, 张承学, 孙元博.基于本地信号的VSC-MTDC输电系统控制策略[J].电力系统自动化, 2010, 34 (9) :44-48.
[13] 韩民晓, 文俊, 徐永海.高压直流输电原理与运行[M].北京:机械工业出版社, 2010.
[14]袁旭峰, 程时杰.多端直流输电技术及其发展[J].继电器RELAY, 2006 (10) :34-19.
[2]Weixing Lu;Boon-Teck Ooi, Optimal acquisition and aggregation of offshore wind power by multiterminal voltage-source HVDC[J].Power Delivery IEEE Transactions on, 2003, 18 (1) :201-206.
[3]陈谦, 唐国庆, 潘诗锋.采用多点直流电压控制方式的VSC多端直流输电系统[J].电力自动化设备, 2004, 24 (5) :10-14.
[4]Hongbo Jiang;Ekstrom, Ake, Multiterminal HVDC systems in urban areas of large cities[J].Power Delivery IEEE Transactions on, 1998, 13 (4) :1278-1284.
[5]Sakamoto, K.;Yajima, M.;Ishikawa, T.;Sugimoto, S.;Sato, T.;Abe, H., Development of a control system for a highperformance self-commutated AC/DC converter[J].Power Delivery IEEE Transactions on, 1998, 13 (1) :225-232.
[6]Seki, N., Field testing of 53 MVA three-terminal DC link between power systems using GTO converters[J].Power Engineering Society Winter Meeting, 2000, 4 (4) :2504-2508.
[7]阮思烨, 李国杰, 孙元章.多端电压源型直流输电系统的控制策略[J].电力系统自动化, 2009, 33 (12) :57-60.
[8]Beerten, J.;Van Hertem, D.;Belmans, R., VSC MTDC systems with a distributed DC voltage control-A power flow approach[J].Powertech IEEE Trondheim.2011:1-6.
[9] 陈谦.新型多端直流输电的运行与控制[D].东南大学.
[10]Hairong Chen, Chao Wang, Fan Zhang, Wulue Pan.Control Stratery Research of VSC Based Multi-terminal HVDC System[J].Power Systems Conference and Exposition, 2006:1986-1990.
[11]陈海荣, 徐政.适用于VSC-MTDC系统的直流电压控制策略[J].电力系统自动化, 2006, 30 (19) :28-33.
[12]丁涛, 张承学, 孙元博.基于本地信号的VSC-MTDC输电系统控制策略[J].电力系统自动化, 2010, 34 (9) :44-48.
[13] 韩民晓, 文俊, 徐永海.高压直流输电原理与运行[M].北京:机械工业出版社, 2010.
[14]袁旭峰, 程时杰.多端直流输电技术及其发展[J].继电器RELAY, 2006 (10) :34-19.
Research of Step-control Strategy for VSC-MTDC
Abstract: Based on structure of multi-terminal HVDC transmission and control theory of voltage-source converter, a new step-control strategy for VSC-MTDC is designed, which could restore system stability rapidly when line or converter station fault get one terminal out of operation.The model of four-terminal VSC-MTDC is built based on PSCAD-EMT-DC.Three-phase voltage source of each terminal is connected to high voltage dc line through converter station, and four terminals are parallel-connection.The new step-control effectiveness is verified via simulation.Moreover, power-step and ground fault tests prove this control strategy is feasible.
Keywords: VSC-MTDC; step-control; fault; simulation;
919
10
10