基于统计分析的冻融循环作用下钢筋与混凝土粘结强度研究综述
摘要:粘结力的存在是钢筋与混凝土共同发挥作用的基础,而冻融循环作用会对二者的粘结强度产生影响。依据已有的冻融循环作用下钢筋与混凝土粘结强度试验数据,通过拟合公式分别分析了冻融循环次数、混凝土抗压强度、混凝土相对保护层厚度以及钢筋直径对粘结强度的影响。最后建立了一个统一的包括多种影响因素在内的粘结强度预测模型,并通过与实际试验数据相比较发现拟合程度较好。
关键词:冻融循环;混凝土抗压强度;相对保护层厚度;钢筋直径;粘结强度;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 杨龙.反复荷载作用下冻融混凝土与变形钢筋粘结性能试验研究[D].西安:西安建筑科技大学,2014.
[2] DETWILER RACHEL,DALGLEISH BRIAN,WILLIAMSON ROBERT.Assessing the durability of concrete in freezing and thawing[J].ACI Materials Journal,1989,86(1):29-35.
[3] TANYILDIZI,HARUN.Long-term microstructure and mechanical properties of polymer-phosphazene concrete exposed to freeze-thaw[J].Construction and Building Materials,2018,187:1121-1129.
[4] JIANG C,WU Y,DAI M J.Degradation of steel-to-concrete bond due to corrosion[J].Construction and Building Materials,2018,158:1073-1080.
[5] WANG Z H,LI L,ZHANG Y X,et al.Bond-slip model considering freeze-thaw damage effect of concrete and its application[J].Engineering Structures,2019,201:109831.
[6] 冀晓东,赵宁,宋玉普.冻融循环作用后变形钢筋与混凝土粘结性能退化研究[J].工业建筑,2010,40(1):87-91.
[7] 王晨霞,唐磊杰,张占彪,等.再生混凝土冻融循环后与钢筋拉拔试验研究[J].建筑结构,2018,48(9):97-102.
[8] 冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D].大连:大连理工大学,2007.
[9] 孙洋,刁波.混合侵蚀与冻融环境下钢筋与混凝土粘结强度退化的试验研究[J].建筑结构学报,2007,28(S1):242-246.
[10] 朱方之,马志鸣,蒋连接,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(5):643-647.
[11] HANJARI K Z,UTGENANNT P,LUNDGREN K.Experimental study of the material and bond properties of frost-damaged concrete[J].Cement and Concrete Research,2011,41(3):244-254.
[12] LIU Y Z,CHEN Y F,WANG W J,et al.Bond performance of thermal insulation concrete under freeze-thaw cycles[J].Construction and Building Materials,2016,104:116-125.
[13] REN G S,SHANG H S,ZHANG P,et al.Bond behaviour of reinforced recycled concrete after rapid freezing-thawing cycles[J].Cold Regions Science and Technology,2019,157:133-138.
[14] XU S H,LI A B,WANG H.Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading[J].Construction and Building Materials,2017,148:344-358.
[15] 胡凤丽.冻融循环后玻化微珠保温混凝土粘结性能的试验研究[D].太原:太原理工大学,2017.
[16] 曹芙波.冻融循环后再生混凝土力学性能及与钢筋黏结试验研究[D].南京:南京航空航天大学,2017.
[17] 安新正,易成,王小学,等.冻融后钢筋再生混凝土粘结性能研究[J].实验力学,2013,28(2):227-234.
[18] 胡孔亮,范超,胡大琳,等.冻融循环和氯盐侵蚀作用下钢筋与混凝土的粘结性能[J].科学技术与工程,2019,19(4):237-243.
[19] 刘运房,刘元珍,胡凤丽,等.钢筋直径对保温混凝土冻融后粘结锚固性能的影响[J].广西大学学报(自然科学版),2019,44(4):1128-1134.
[20] 李伯潇.冻融环境下钢筋与粉煤灰混凝土的粘结性能研究[D].包头:内蒙古科技大学,2014.
[21] 王晨霞,钤建勋,王浩,等.冻融损伤对再生混凝土耐久性及与钢筋粘结性能分析[J].重庆大学学报,2016,39(2):131-139.
[22] 张利,郭金辉,宿晓萍.冻融循环作用下钢筋与混凝土黏结应力的损伤研究[J].工业建筑,2015,45(12):137-140,202.
[23] SHANG H S,WANG Z H,ZHANG P,et al.Bond behavior of steel bar in air-entrained RCAC in fresh water and sea water after fast freeze-thaw cycles[J].Cold Regions Science and Technology,2017,135:90-96.
[24] MA Z M,ZHU F Z,BA G Z.Effects of freeze-thaw damage on the bond behavior of concrete and enhancing measures[J].Construction and Building Materials,2019,196:375-385.
[25] SHANG H S,ZHAO T J,CAO W Q.Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles[J].Cold Regions Science and Technology,2015,118:38-44.
[26] 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009.
[27] 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D]:北京:清华大学,1990.
[28] JI X D,SONG Y,LIU Y P.Effect of freeze-thaw cycles on bond strength between steel bars and concrete[J].Journal of Wuhan University of Technology-Mater,2008,23(4):584-588.
[29] 韦伟.硫酸盐冻融环境下复合石灰石粉混凝土与钢筋粘结性能和退化机理研究[D].徐州:中国矿业大学,2019.
[30] 范超.氯盐腐蚀和冻融循环作用下钢筋与混凝土粘结锚固性能的研究[D].西安:长安大学,2018.
[31] HANJARI,KAMYAB ZANDI.Load-carrying capacity of damaged concrete structures[D].Gothenburg,Sweden:Chalmers University of Technology,2008.
[2] DETWILER RACHEL,DALGLEISH BRIAN,WILLIAMSON ROBERT.Assessing the durability of concrete in freezing and thawing[J].ACI Materials Journal,1989,86(1):29-35.
[3] TANYILDIZI,HARUN.Long-term microstructure and mechanical properties of polymer-phosphazene concrete exposed to freeze-thaw[J].Construction and Building Materials,2018,187:1121-1129.
[4] JIANG C,WU Y,DAI M J.Degradation of steel-to-concrete bond due to corrosion[J].Construction and Building Materials,2018,158:1073-1080.
[5] WANG Z H,LI L,ZHANG Y X,et al.Bond-slip model considering freeze-thaw damage effect of concrete and its application[J].Engineering Structures,2019,201:109831.
[6] 冀晓东,赵宁,宋玉普.冻融循环作用后变形钢筋与混凝土粘结性能退化研究[J].工业建筑,2010,40(1):87-91.
[7] 王晨霞,唐磊杰,张占彪,等.再生混凝土冻融循环后与钢筋拉拔试验研究[J].建筑结构,2018,48(9):97-102.
[8] 冀晓东.冻融后混凝土力学性能及钢筋混凝土粘结性能的研究[D].大连:大连理工大学,2007.
[9] 孙洋,刁波.混合侵蚀与冻融环境下钢筋与混凝土粘结强度退化的试验研究[J].建筑结构学报,2007,28(S1):242-246.
[10] 朱方之,马志鸣,蒋连接,等.持载和冻融循环对钢筋混凝土粘结性能的影响[J].西安建筑科技大学学报(自然科学版),2016,48(5):643-647.
[11] HANJARI K Z,UTGENANNT P,LUNDGREN K.Experimental study of the material and bond properties of frost-damaged concrete[J].Cement and Concrete Research,2011,41(3):244-254.
[12] LIU Y Z,CHEN Y F,WANG W J,et al.Bond performance of thermal insulation concrete under freeze-thaw cycles[J].Construction and Building Materials,2016,104:116-125.
[13] REN G S,SHANG H S,ZHANG P,et al.Bond behaviour of reinforced recycled concrete after rapid freezing-thawing cycles[J].Cold Regions Science and Technology,2019,157:133-138.
[14] XU S H,LI A B,WANG H.Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading[J].Construction and Building Materials,2017,148:344-358.
[15] 胡凤丽.冻融循环后玻化微珠保温混凝土粘结性能的试验研究[D].太原:太原理工大学,2017.
[16] 曹芙波.冻融循环后再生混凝土力学性能及与钢筋黏结试验研究[D].南京:南京航空航天大学,2017.
[17] 安新正,易成,王小学,等.冻融后钢筋再生混凝土粘结性能研究[J].实验力学,2013,28(2):227-234.
[18] 胡孔亮,范超,胡大琳,等.冻融循环和氯盐侵蚀作用下钢筋与混凝土的粘结性能[J].科学技术与工程,2019,19(4):237-243.
[19] 刘运房,刘元珍,胡凤丽,等.钢筋直径对保温混凝土冻融后粘结锚固性能的影响[J].广西大学学报(自然科学版),2019,44(4):1128-1134.
[20] 李伯潇.冻融环境下钢筋与粉煤灰混凝土的粘结性能研究[D].包头:内蒙古科技大学,2014.
[21] 王晨霞,钤建勋,王浩,等.冻融损伤对再生混凝土耐久性及与钢筋粘结性能分析[J].重庆大学学报,2016,39(2):131-139.
[22] 张利,郭金辉,宿晓萍.冻融循环作用下钢筋与混凝土黏结应力的损伤研究[J].工业建筑,2015,45(12):137-140,202.
[23] SHANG H S,WANG Z H,ZHANG P,et al.Bond behavior of steel bar in air-entrained RCAC in fresh water and sea water after fast freeze-thaw cycles[J].Cold Regions Science and Technology,2017,135:90-96.
[24] MA Z M,ZHU F Z,BA G Z.Effects of freeze-thaw damage on the bond behavior of concrete and enhancing measures[J].Construction and Building Materials,2019,196:375-385.
[25] SHANG H S,ZHAO T J,CAO W Q.Bond behavior between steel bar and recycled aggregate concrete after freeze-thaw cycles[J].Cold Regions Science and Technology,2015,118:38-44.
[26] 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082—2009[S].北京:中国建筑工业出版社,2009.
[27] 徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D]:北京:清华大学,1990.
[28] JI X D,SONG Y,LIU Y P.Effect of freeze-thaw cycles on bond strength between steel bars and concrete[J].Journal of Wuhan University of Technology-Mater,2008,23(4):584-588.
[29] 韦伟.硫酸盐冻融环境下复合石灰石粉混凝土与钢筋粘结性能和退化机理研究[D].徐州:中国矿业大学,2019.
[30] 范超.氯盐腐蚀和冻融循环作用下钢筋与混凝土粘结锚固性能的研究[D].西安:长安大学,2018.
[31] HANJARI,KAMYAB ZANDI.Load-carrying capacity of damaged concrete structures[D].Gothenburg,Sweden:Chalmers University of Technology,2008.
Research review of bond strength between steel bar and concrete in freeze-thaw cycles based on statistical analysis
Abstract: The existence of bond is the basis for reinforcing bar and concrete to work together, and the freeze-thaw cycles will affect the bond strength of them. According to the existing experimental data of bond strength between reinforcing bar and concrete under freeze-thaw cycles, the influences of freeze-thaw cycles, concrete compressive strength, concrete relative protective layer thickness and reinforcing bar diameter on bond strength were analyzed by fitting formulas. Finally, a unified bond strength prediction model including a variety of influencing factors was established. By comparing with the actual test data, it is found that the fitting degree is better.
Keywords: freeze-thaw cycle; compressive strength of concrete; relative protective layer thickness; reinforcing bar diameter; bond strength
917
0
0