基于增量动力分析的高烈度区框架-核心筒结构地震易损性分析

作者:任重翠 陈才华 王翠坤 时继瑞 陆宜倩 崔明哲 潘玉华
单位:建筑安全与环境国家重点实验室 中国建筑科学研究院有限公司 国家建筑工程技术研究中心
摘要:基于增量动力分析方法和数理统计,可有效进行结构地震易损性分析。以一个8度区、98m高的框架-核心筒结构为例,采用增量动力分析方法,以结构最大层间位移角为性能参数,进行结构地震易损性分析和抗震性能评估。结果表明,随地震动强度增大,结构损伤程度加重,刚度逐步下降、周期延长,结构层间位移角增大。但因出现的薄弱位置不同,最大层间位移角会出现随地震动强度增大而减小的情况,因此抗震性能评估中需考虑楼层因素。地震易损性分析结果得到,结构在小震、中震和大震作用下处于正常使用、修复后使用和生命安全的概率最高,表明结构能够满足“小震不坏、中震可修、大震不倒”的抗震要求。增量动力分析方法,能够获得结构完整的非线性响应,可从概率角度量化结构抗震性能,并有效反映结构薄弱部位,是结构抗震性能评估的有效手段。
关键词:框架-核心筒结构;增量动力分析;层间位移角;地震易损性;抗震性能
作者简介:任重翠,博士,正高级工程师,一级注册结构工程师,主要从事高层建筑结构研究,Email:renchongcui@cabrtech.com。
基金:住房和城乡建设部科学技术计划项目(2021-K-022)。 -页码-:19-24
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 包世华.新编高层建筑结构[M].北京:中国水利水电出版社,2001.
[2] 肖从真,王翠坤,黄小坤.中国建筑科学研究院高层建筑结构研究发展与展望[J].建筑科学,2013,29(11):11-21.
[3] 周洲,吕大刚,于晓辉.基于文献调研的我国建筑结构地震倒塌风险概率评估[J].建筑结构学报,2020,41(8):1-18.
[4] 刘洪波,佟瑶,蒋垚俊,等.RC框架结构地震易损性分析方法研究进展[J].世界地震工程,2020,36(3):141-150.
[5] 燕登.基于FEMA P-58的钢筋混凝土框架结构抗震及减隔震性能评估[D].哈尔滨:中国地震局工程力学研究所,2019:59-81.
[6] 徐龙河,单旭,李忠献.强震下钢框架结构易损性分析及优化设计[J].工程力学,2013,30(1):175-179.
[7] 鲁若帆,张令心,马加路.不同区域多层砖砌体住宅房屋地震易损性对比分析[J].地震工程与工程振动,2020,40(5):84-96.
[8] 朱汉波,梁兴文,党英杰.框架-剪力墙结构基于地震强度的新一代抗震性能评估方法研究[J].振动与冲击,2017,36(10):140-148.
[9] 曾翔,刘诗璇,许镇,等.基于FEMA-P58方法的校园建筑地震经济损失预测案例分析[J].工程力学,2016,33(S1):113-118.
[10] 吕西林,苏宁粉,周颖.复杂高层结构基于增量动力分析法的地震易损性分析[J].地震工程与工程振动,2012,32(5):19-25.
[11] VAMVATSIKOS D,CORNELL C A.Incremental dynamic analysis[J].Earthquake Engineering & Structural Dynamics,2002,31(3):491-514.
[12] FEMA.Recommended seismic design criteria for new steel moment-frame buildings[R].Report No.FEMA 350,SAC Joint Venture.Washington D.C.:Federal Emergency Management Agency,2000.
[13] FEMA.Recommended seismic design criteria for new steel moment-frame buildings [R].Report No.FEMA 351,SAC Joint Venture.Washington D.C.:Federal Emergency Management Agency,2000.
[14] ATC-63.FEMA-P695 quantification of building seismic performance factors[R].ATC-63 Project Report (90% Draft).Washington D.C.:Federal Emergency Management Agency,2008.
[15] 建筑抗震韧性评价标准:GB/T 38591—2020[S].北京:中国标准出版社,2020.
[16] 建筑抗震设计规范:GB 50011—2010[S].北京:中国建筑工业出版社,2010.
[17] 高层建筑混凝土结构技术规程:JGJ 3—2010[S].北京:中国建筑工业出版社,2011.
[18] 侯炜.钢筋混凝土核心筒抗震性能及其设计理论研究[D].西安:西安建筑科技大学,2011.
[19] 张令心,徐梓洋,刘洁平,等.基于增量动力分析的超高层混合结构地震易损性分析[J].建筑结构学报,2016,37(9):19-25.
[20] 吕大刚.结构抗震可靠度二种简化解析表达式的一致性证明[J].地震工程与工程振动,2009,29(5):59-65.
[21] LUCO N,CORNELL C A.Effects of connection fractures on SMRF seismic drift demands[J].Journal of Structural Engineering,2000,126(1):127-136.
[22] TBI Guidelines Working Croup.Guidelines for performance-based seismic design of tall buildings[R].Berkeley,California:Pacific Earthquake Engineering Research Center,University of California,2010.
Seismic vulnerability analysis of frame-core wall structure in high seismic zone based on incremental dynamic analysis
REN Chongcui CHEN Caihua WANG Cuikun SHI Jirui LU Yiqian CUI Mingzhe PAN Yuhua
(State Key Laboratory of Building Safety and Environment China Academy of Building Research National Engineering Research Center of Building Technology)
Abstract: Structure seismic vulnerability analysis can be obtained by the incremental dynamic analysis(IDA) method and mathematical statistics effectively. Seismic vulnerability analysis and seismic performance evaluation of a 98 m height frame-core wall structure located at 8 degree zone were studied through IDA method which took the max story drifts as the performance parameter. The results show that with the earthquake intensity increasing, the structure damage worsened, the literal stiffness decreased, the structure periods prolonged and the story drifts increased. But for the weak floors were different in nonlinear stages, the max story drifts would decrease with the earthquake intensity increasing. Therefore, the floor factors should be considered in structural seismic performance evaluation. The seismic vulnerability analysis results show that the probability of in serviceability state, reparability state and life safety state were the highest under the frequent earthquakes, the design based earthquakes and the rare earthquakes. The structure can meet the requirements of ‘perfect subjected to frequent earthquake, reparable subjected to design based earthquake, no collapse subjected to rare earthquake'. Incremental dynamic elastoplastic analysis which was an effective way to evaluate the structural seismic performance can obtain the complete nonlinear response of structure, quantify the seismic performance of structure from the probabilistic point of view and reflect the structure weak floors.
Keywords: frame-core wall structure; incremental dynamic analysis; story drift; seismic vulnerability; seismic performance
438 0 0
文字:     A-     A+     默认 取消