连续曲线双箱钢-混组合梁弯扭性能试验研究
摘要:为研究连续曲线双箱钢-混组合梁的弯扭性能,以实际工程为背景,以曲线半径和横隔板连接方式为参数,设计了3根1∶10的缩尺模型,并对其进行静力加载试验,研究试验梁跨中截面的荷载-挠度曲线、横向挠度分布和钢梁与混凝土板间的相对滑移规律。结果表明,3根梁的破坏形式一致,均为弯扭破坏,负弯矩区在0.1Pu(Pu为极限荷载)时就会开裂;极限荷载时,试验梁跨中截面外侧挠度达内侧的1.37倍;试验梁的抗弯刚度和抗扭刚度均随着曲线半径的增大而提高,横隔板连接方式对其弯扭性能影响不大;混凝土板与钢梁结合面切向滑移随着曲线半径的增大而减小,横向栓接试验梁的滑移量小于横向焊接试验梁的;切向滑移量最大值出现在跨度的3/4处,径向滑移量最大值出现在中支点附近处。
关键词:双箱钢-混组合梁,横隔板连接方式,曲线半径,弯扭性能,滑移
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] THEVENDRAN V,CHEN S,SHANMUGAM N E,et al.Nonlinear analysis of steel-concrete composite beams curved in plan[J].Finite Elements in Analysis and Design,1999,32(3):125-139.
[2] THEVENDRAN V,SHANMUGAM N E,CHEN S,et al.Experimental study on steel-concrete composite beams curved in plan[J].Engineering Structures,2000,22(8):877-889.
[3] TAN E L,UY B.Experimental study on straight composite beams subjected to combined flexure and torsion[J].Journal of Constructional Steel Research,2009,65(4):784-793.
[4] TAN E L,UY B.Experimental study on curved composite beams subjected to combined flexure and torsion[J].Journal of Constructional Steel Research,2009,65(8/9):1855-1863.
[5] 聂建国,唐亮,胡少伟,等.钢-混凝土组合箱梁的抗扭强度[J].土木工程学报,2008,41(1):1-11.
[6] 张彦玲,孙瞳,张德莹.钢-混凝土曲线组合梁弯扭性能的试验研究[J].石家庄铁道大学学报,2014,27(4):1-8.
[7] 张彦玲,孙瞳,侯忠明,等.隔板式钢-混凝土曲线组合梁弯扭性能[J].吉林大学学报(工学版),2015,45(4):1107-1114.
[8] 刘翔.钢-预制带肋混凝土叠合板组合梁抗弯性能理论分析[D].济南:山东大学,2017.
[9] 祝松伟.钢-混凝土组合梁受力性能研究[D].西安:西安理工大学,2019.
[10] 刘劲,丁发兴,蒋丽忠,等.负弯矩荷载下钢-混凝土组合梁抗弯刚度研究[J].铁道科学与工程学报,2019,16(9):2272-2280.
[11] 李杨,邢万里,丁井臻.钢-混凝土双面组合作用连续梁有限元分析与试验设计[J].建筑结构,2020,50(17):84-90.
[2] THEVENDRAN V,SHANMUGAM N E,CHEN S,et al.Experimental study on steel-concrete composite beams curved in plan[J].Engineering Structures,2000,22(8):877-889.
[3] TAN E L,UY B.Experimental study on straight composite beams subjected to combined flexure and torsion[J].Journal of Constructional Steel Research,2009,65(4):784-793.
[4] TAN E L,UY B.Experimental study on curved composite beams subjected to combined flexure and torsion[J].Journal of Constructional Steel Research,2009,65(8/9):1855-1863.
[5] 聂建国,唐亮,胡少伟,等.钢-混凝土组合箱梁的抗扭强度[J].土木工程学报,2008,41(1):1-11.
[6] 张彦玲,孙瞳,张德莹.钢-混凝土曲线组合梁弯扭性能的试验研究[J].石家庄铁道大学学报,2014,27(4):1-8.
[7] 张彦玲,孙瞳,侯忠明,等.隔板式钢-混凝土曲线组合梁弯扭性能[J].吉林大学学报(工学版),2015,45(4):1107-1114.
[8] 刘翔.钢-预制带肋混凝土叠合板组合梁抗弯性能理论分析[D].济南:山东大学,2017.
[9] 祝松伟.钢-混凝土组合梁受力性能研究[D].西安:西安理工大学,2019.
[10] 刘劲,丁发兴,蒋丽忠,等.负弯矩荷载下钢-混凝土组合梁抗弯刚度研究[J].铁道科学与工程学报,2019,16(9):2272-2280.
[11] 李杨,邢万里,丁井臻.钢-混凝土双面组合作用连续梁有限元分析与试验设计[J].建筑结构,2020,50(17):84-90.
Experimental study on bending and torsion performance of continuous curved double-box steel-concrete composite beams
Abstract: In order to study the bending and torsion performance of continuous curved double-box steel-concrete composite beams, taking the actual engineering as the background and taking curve radius and connection method of transverse diaphragm as parameters, three scaled 1∶10 models were designed and static loading tests were carried out. The load-deflection curve and lateral deflection distribution of the mid-span section of the test beam and the law of relative slip between the steel beam and the concrete slab were studied. The results show that the failure modes of the three beams are the same, all of which are bending and torsion failures and the negative bending moment zone will crack at 0.1Pu(Pu is the ultimate load). Under ultimate load, the outer deflection of the mid-span section of the test beam is 1.37 times that of the inner side. The bending stiffness and torsion stiffness of the test beam both increase with the increase of the curve radius. The connection method of transverse diaphragm has little influence on the bending and torsion performance. The tangential slip of the interface between concrete slab and steel beam decreases with the increase of the curve radius. The slip of the lateral bolted test beam is smaller than the lateral welded test beam. The maximum tangential slip appears at 3/4 of the span and the maximum radial slip appears near the middle fulcrum.
Keywords: double-box steel-concrete composite beam; connection method of transverse diaphragm; curve radius; bending and torsion performance; slip
691
0
0