基于组合赋权法的农村地区分布式能源系统综合评价
摘要:为了对农村地区分布式能源系统的综合效益作出评价,针对某分布式能源系统项目从节能性、经济性与环境性三方面建立了评价指标体系,提出了层次分析法(AHP)与熵值法相结合的主客观组合赋权方法,并构建了基于组合赋权法的逼近理想解排序法(TOPSIS)多属性综合评价模型,对各个运行方案的综合效益进行了优劣排序。研究结果表明:评价指标中经济性指标权重占比为0.415 2,农村地区在确定分布式能源系统运行方案时需首先考虑系统的经济性;分布式能源系统以沼气作为燃料系统的综合效益要好于天然气,对于生物质能相对丰富的农村地区宜采用沼气作为供能系统的燃料。
关键词:农村地区热电分供系统联供系统运行模式指标权重多属性综合评价
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
限时优惠福利:领取VIP会员
全年期刊、VIP视频免费!
全年期刊、VIP视频免费!
参考文献[1] 中国建筑能耗研究报告(2020)[J].建筑节能,2021,49(2):1- 6.
[2] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2020[M].北京:中国建筑工业出版社,2020:5- 11.
[3] QIU H G,YAN J B,LEI Z,et al.Rising wages and energy consumption transition in rural China[J].Energy policy,2018,119:545- 553.
[4] 顾志祥,孙思宇,孔飞,等.燃气冷热电分布式能源系统设计优化综述[J].华电技术,2019,41(3):8- 13,42.
[5] 龙惟定.第三代分布式能源系统及其应用[J].暖通空调,2019,49(7):1- 10,68.
[6] 田宜水,单明,孔庚,等.我国生物质经济发展战略研究[J].中国工程科学,2021,23(1):133- 140.
[7] LI M,MU H L,LI N,et al.Optimal option of natural-gas district distributed energy systems for various buildings[J].Energy and buildings,2014,75:70- 83.
[8] WANG J J,XU Z L,JIN H G,et al.Design optimization and analysis of a biomass gasification based BCHP system:a case study in Harbin,China[J].Renewable energy,2014,71:572- 583.
[9] 任洪波,邱留良,吴琼,等.基于不同供能模式的燃气分布式能源系统性能评价[J].暖通空调,2016,46(10):61- 69.
[10] JING R,WANG M,BRANDON N,et al.Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China[J].Energy,2017,141:273- 289.
[11] WU Q,REN H,GAO W,et al.Multi-criteria assessment of combined cooling,heating and power systems located in different regions in Japan[J].Applied thermal engineering,2014,73(1):660- 670.
[12] FRANCO A,VERSACE M.Optimum sizing and operational strategy of CHP plant for district heating based on the use of composite indicators[J].Energy,2017,124:258- 271.
[13] JUNG Y,KIM J,LEE H.Multi-criteria evaluation of medium-sized residential building with micro-CHP system in South Korea[J].Energy and buildings,2019,193:201- 215.
[14] 林怡,张士杰,肖云汉.复合供能系统优化配置和运行策略研究[J].暖通空调,2011,41(10):84- 90.
[15] 王红彦,王亚静,高春雨,等.基于LCA的秸秆沼气集中供气工程环境影响评价[J].农业工程学报,2017,33(21):237- 243.
[16] KAWADIAS K C,TOSIOS A P,MAROULIS Z B.Design of a combined heating,cooling and power system:sizing,operation strategy selection and parametric analysis[J].Energy conversion & management,2010,51(4):833- 845.
[17] BADAMI M,GERBONI R,PORTORARO A.Determination and assessment of indices for the energy performance of district heating with cogeneration plants[J].Energy,2017,127:697- 703.
[18] 祝颖,邵波,刘艳峰,等.分布式能源系统最优配置模式研究:以关中地区新农村为例[J].太阳能学报,2019,40(9):2547- 2553.
[2] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2020[M].北京:中国建筑工业出版社,2020:5- 11.
[3] QIU H G,YAN J B,LEI Z,et al.Rising wages and energy consumption transition in rural China[J].Energy policy,2018,119:545- 553.
[4] 顾志祥,孙思宇,孔飞,等.燃气冷热电分布式能源系统设计优化综述[J].华电技术,2019,41(3):8- 13,42.
[5] 龙惟定.第三代分布式能源系统及其应用[J].暖通空调,2019,49(7):1- 10,68.
[6] 田宜水,单明,孔庚,等.我国生物质经济发展战略研究[J].中国工程科学,2021,23(1):133- 140.
[7] LI M,MU H L,LI N,et al.Optimal option of natural-gas district distributed energy systems for various buildings[J].Energy and buildings,2014,75:70- 83.
[8] WANG J J,XU Z L,JIN H G,et al.Design optimization and analysis of a biomass gasification based BCHP system:a case study in Harbin,China[J].Renewable energy,2014,71:572- 583.
[9] 任洪波,邱留良,吴琼,等.基于不同供能模式的燃气分布式能源系统性能评价[J].暖通空调,2016,46(10):61- 69.
[10] JING R,WANG M,BRANDON N,et al.Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China[J].Energy,2017,141:273- 289.
[11] WU Q,REN H,GAO W,et al.Multi-criteria assessment of combined cooling,heating and power systems located in different regions in Japan[J].Applied thermal engineering,2014,73(1):660- 670.
[12] FRANCO A,VERSACE M.Optimum sizing and operational strategy of CHP plant for district heating based on the use of composite indicators[J].Energy,2017,124:258- 271.
[13] JUNG Y,KIM J,LEE H.Multi-criteria evaluation of medium-sized residential building with micro-CHP system in South Korea[J].Energy and buildings,2019,193:201- 215.
[14] 林怡,张士杰,肖云汉.复合供能系统优化配置和运行策略研究[J].暖通空调,2011,41(10):84- 90.
[15] 王红彦,王亚静,高春雨,等.基于LCA的秸秆沼气集中供气工程环境影响评价[J].农业工程学报,2017,33(21):237- 243.
[16] KAWADIAS K C,TOSIOS A P,MAROULIS Z B.Design of a combined heating,cooling and power system:sizing,operation strategy selection and parametric analysis[J].Energy conversion & management,2010,51(4):833- 845.
[17] BADAMI M,GERBONI R,PORTORARO A.Determination and assessment of indices for the energy performance of district heating with cogeneration plants[J].Energy,2017,127:697- 703.
[18] 祝颖,邵波,刘艳峰,等.分布式能源系统最优配置模式研究:以关中地区新农村为例[J].太阳能学报,2019,40(9):2547- 2553.
Comprehensive evaluation of distributed energy system in rural areas based on combinatorial empowerment method
Abstract: To evaluate the comprehensive benefits of the distributed energy system in rural areas, this study establishes the evaluation indexes for a distributed energy system project about energy saving, economy and environment, and proposes a subjective and objective combinatorial empowerment method combining the analytic hierarchy process(AHP) method with the entropy method. The multi-criteria comprehensive evaluation model of the technique for order preference by similarity to an ideal solution(TOPSIS) method based on the combinatorial empowerment method is established and the comprehensive benefits of operation strategies are ranked. The results show that the weight ratio of economic indicators in the evaluation index is 0.415 2, and rural areas need to consider the economy of the system first when determining the operation plan of the distributed energy system. The comprehensive benefit of the distributed energy system with biogas as fuel system is better than that of natural gas, and biogas should be used as the fuel of the energy supply system in rural areas with relatively rich biomass energy.
Keywords: rural area; thermoelectric distribution system; cogeneration system; operation strategy; index weight; multi-criteria comprehensive evaluation;
780
0
0