建筑结构抗震性能化设计的地震动参数与地震动记录选取

引用文献:

吕大刚 王丛 伊广丽 乔卓琦. 建筑结构抗震性能化设计的地震动参数与地震动记录选取[J]. 建筑结构,2022,48(21):22-32.

LÜ Dagang WANG Cong YI Guangli QIAO Zhuoqi. Ground motion parameters and records selection for performance-based seismic design of building structure[J]. Building Structure,2022,48(21):22-32.

作者:吕大刚 王丛 伊广丽 乔卓琦
单位:哈尔滨工业大学结构工程灾变与控制教育部重点实验室 哈尔滨工业大学土木工程智能防灾减灾工业与信息化部重点实验室 哈尔滨工业大学地震灾害防治应急管理部重点实验室
摘要:地震动参数的确定以及地震动记录的选取和调整,是建筑结构抗震性能化设计的核心问题之一。我国的地震动参数选取存在不协调,对地震动记录选取和调幅的规定也较笼统。针对有效峰值加速度(EPA)和峰值地面加速度(PGA)的关系进行了统计分析,给出了各场地条件下二者的回归关系,分析了EPA的两种定义,发现时程分析所用地震加速度时程的目标EPA和PGA值相差不大,可直接将EPA目标值作为PGA的目标值,对地震动加速度时程曲线进行线性调幅。给出了将抗规设计谱作为目标谱挑选地震动记录的流程,分析了不同调幅方法对选波结果的影响,给出了选波和调幅建议。分析了三种场地相关谱,给出了目标谱的选择建议,为《建筑结构抗震性能化设计标准》(T/CECA 20024—2022)中的相关条文提供了理论依据。
关键词:抗震性能化设计;地震动参数;地震动记录选取;地震动记录调幅;有效峰值加速度;峰值地面加速度
作者简介:吕大刚,博士,教授,主要从事土木工程结构与基础设施多灾害安全、风险与韧性研究,Email:ludagang@hit.edu.cn。
基金:国家自然科学基金项目(52078176、51678209)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] STEWART J P,CHIOU S J,BRAY J D,et al.Ground motion evaluation procedures for performance-based design[J].Soil Dynamics and Earthquake Engineering,2002,22(9/10/11/12):765-772.
[2] HASELTON C B.Evaluation of ground motion selection and modification methods:predicting median interstory drift response of buildings:PEER report 2009/01[R].Berkeley:Pacific Earthquake Engineering Research Center,University of California,2009.
[3] CORNELL C A,KRAWINKLER H.Progress and challenges in seismic performance assessment[J].PEER Center News,2000,3:1-3.
[4] MOEHLE J,DEIERLEIN G G.A framework for performance-based earthquake resistive design[C]// Proceedings of the 13th World Conference on Earthquake Engineering.Vancouver,2004.
[5] 吕大刚,刘洋,于晓辉.第二代基于性能地震工程中的地震易损性模型及正逆概率风险分析[J].工程力学,2019,36(9):1-11,24.
[6] 陈厚群,郭明珠.重大工程场地设计地震动参数选择[C]// 中国水利水电科学研究院2000年学术交流会议论文集,北京,2002.
[7] 钟菊芳,胡晓,易立新,等.最大峰值加速度与有效峰值加速度的大小比例关系及影响因素探讨[J].世界地震工程,2006,22(2):34-38.
[8] 常磊,廖耘,王亚勇.基于EPA的地震动记录调整方法及应用实例[J].建筑结构,2020,50(4):13-17.
[9] 王亚勇.GB 50011—2010《建筑抗震设计规范》和GB 18306—2015《地震动参数区划图》反应谱对比及地震动峰值加速度应用研究[J].建筑结构学报,2020,41(2):1-6.
[10] NEHRP recommended provisions for seismic regulations for new buildings and other structures.part 1:provisions:FEMA 302,part 2:commentary:FEMA 303[S].Washington,D.C.:Federal Emergency Management Agency,1997.
[11] NEHRP recommended seismic provisions for new buildings and other structures.volume I:part 1 provisions,part 2 commentary:FEMA P-1050-1[S].Washington,D.C.:Federal Emergency Management Agency ,2015.
[12] NEHRP recommended seismic provisions for new buildings and other structures.volume I:part 1 provisions,part 2 commentary:FEMA P-2082-1[S].Washington,D.C.:Federal Emergency Management Agency,2020.
[13] Minimum design loads for buildings and other structures:ASCE/SEI 7-10[S].New York:American Society of Civil Engineers,2010.
[14] Minimum design loads and associated criteria for buildings and other structures:ASCE/SEI 7-16[S].New York:American Society of Civil Engineers,2016.
[15] Design of structures for earthquake resistance.part1:general rules,seismic actions and rules for buildings:Eurocode 8[S].Brussels:European Committee for Standardization,2004.
[16] Tall Buildings Initiative.Guidelines for performance-based seismic design of tall buildings,version 1.0:PEER report 2010/05[R].Berkeley:Pacific Earthquake Engineering Research Center,University of California,2010.
[17] Tall Buildings Initiative.Guidelines for performance-based seismic design of tall buildings,version 2.03:PEER report 2017/06[R].Berkeley:Pacific Earthquake Engineering Research Center,University of California,2017.
[18] YOKEL F Y.Effect of subsurface conditions on earthquake ground motions[R].Gaithersburg:National Institute of Standards and Technology,1993.
[19] Structural design actions:part5:earthquake actions—New Zealand code and supplement:NZS 1170.5[S].Wellington:Standards New Zealand,2004.
[20] 杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
[21] 邓军,唐家祥.时程分析法输入地震记录的选择与实例[J].工业建筑,2000,30(8):9-12.
[22] 肖明葵,刘纲,白绍良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程,2006,22(3):89-94.
[23] 冀昆,温瑞智,任叶飞.适用于我国抗震设计规范的天然强震记录选取[J].建筑结构学报,2017,38(12):57-67.
[24] 吕大刚,刘亭亭,李思雨,等.目标谱与调幅方法对地震动选择的影响分析[J].地震工程与工程振动,2018,38(4):21-28.
[25] 王丛,吕大刚.西安地区风险导向地震动参数的确定[J].哈尔滨工业大学学报,2020,52(10):52-60.
[26] 王丛,吕大刚.西安地区一致危险谱与一致风险谱的构建[J].哈尔滨工业大学学报,2021,53(4):151-159.
[27] 徐铭阳,王丛,董尧,等.极罕遇地震作用下建筑结构一致风险抗倒塌设计方法研究[J].建筑结构学报,2022,43(7):253-263.
[28] 伊广丽.基于规范设计谱和地震区设定谱的地震动记录选用研究[D].哈尔滨:哈尔滨工业大学,2020.
[29] 乔卓琦.面向一致风险抗震设计的地震动记录选取研究[D].哈尔滨:哈尔滨工业大学,2021.
[30] 姬路遥.考虑场地土效应及其不确定性的地震动记录选取研究[D].哈尔滨:哈尔滨工业大学,2021.
[31] LEYENDECKER E V.Amendments to ATC 3-06 tentative provisions for the development of seismic regulations for buildings for use in trial designs[R].Washington,D.C.:National Bureau of Standards,1982.
[32] 高孟潭.GB 18306—2015《中国地震动参数区划图》宣贯教材[M].北京:中国标准出版社,2015.
[33] HONG H P,FENG C.On the ground-motion models for Chinese seismic hazard mapping[J].Bulletin of the Seismological Society of America,2019,109(5):2106-2124.
[34] DEHGHANI M,TREMBLAY R.Robust period-independent ground motion selection and scaling for effective seismic design and assessment[J].Journal of Earthquake Engineering,2016,20(2):185-218.
[35] 谢礼立,翟长海.最不利设计地震动研究[J].地震学报,2003,25(3):250-261.
[36] BAKER J W.Conditional mean spectrum:tool for ground-motion selection[J].Journal of Structural Engineering,2011,137(3):322-331.
[37] JAYARAM N,LIN T,BAKER J W.A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance[J].Earthquake Spectra,2011,27(3):797-815.
[38] LIN T,HASELTON C B,BAKER J W.Conditional spectrum-based ground motion selection.part I:hazard consistency for risk-based assessments[J].Earthquake Engineering & Structural Dynamics,2013,42(12):1847-1865.
[39] LIN T,HASELTON C B,BAKER J W.Conditional spectrum-based ground motion selection.part Ⅱ:intensity-based assessments and evaluation of alternative target spectra[J].Earthquake Engineering & Structural Dynamics,2013,42(12):1867-1884.
Ground motion parameters and records selection for performance-based seismic design of building structure
LÜ Dagang WANG Cong YI Guangli QIAO Zhuoqi
(Key Lab of Structural Dynamic Behaviors and Control of Ministry of Education, Harbin Institute of Technology Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of Ministry of Industry and Information Technology, Harbin Institute of Technology Key Laboratory of Earthquake Disaster Mitigation of Ministry of Emergency Management,Harbin Institute of Technology)
Abstract: The determination of ground motion parameters as well as the selection and modification of ground motion records are the core problems of performance-based seismic design of building structures. There have been in-consistency in the ground motion parameters adopted in China. The specifications in ground motion selection and scaling in Chinese seismic design code are rather vague. The relationship between the effective peak acceleration(EPA) and peak ground acceleration(PGA) was investigated through statistical analysis. The regression relationships between EPA and PGA under different site conditions were derived, and two definitions of EPA were studied. It has been found that the differences between the target values of EPA and PGA are small, the target value of EPA can be directly taken as the ones of PGA for linearly scaling the magnitude of the ground motions during time-history analysis. A rational procedure for the selection of ground motion records when taking the standard seismic design spectrum as the target spectrum was given, and the suggestions for selecting and scaling ground motion records were given based on the effect analysis of different scaling approaches. Three site-specific spectra were analyzed, and the selection suggestions of site-specific spectra were provided, and provided the theoretical support for relevant provisions in the Standard for performance-based seismic design of building structures(T/CECA 20024—2022).
Keywords: performance-based seismic design; ground motion parameter; ground motion record selection; ground motion record scaling; effective peak acceleration; peak ground acceleration
329 0 0
文字:     A-     A+     默认 取消