上海地区某基坑开挖阶段的位移与受力分析

引用文献:

任东兴 黄海 邵康 刘欢欢 罗东林 薛鹏. 上海地区某基坑开挖阶段的位移与受力分析[J]. 建筑结构,2022,48(16):116-124.

REN Dongxing HUANG Hai SHAO Kang LIU Huanhuan LUO Donglin XUE Peng. Displacement and stress analysis of a Shanghai foundation pit at excavation stages[J]. Building Structure,2022,48(16):116-124.

作者:任东兴 黄海 邵康 刘欢欢 罗东林 薛鹏
单位:中冶成都勘察研究总院有限公司 西南交通大学土木工程学院 四川能投节能环保投资有限公司
摘要:以上海地区采用顺作法施工开挖深度为20.8m的建筑基坑为研究对象,对五个施工阶段的地下连续墙侧向和竖向位移,立柱竖向位移和混凝土支撑轴力进行监测,以围护结构的侧向变形随深度、位置和施工阶段的差异分析基坑变形呈现的空间效应与深度效应,以立柱和地下连续墙的竖向变形规律分析基坑回弹特征,以混凝土轴力随时间变化规律分析支撑在各施工阶段的关键作用。分析结果表明:地下连续墙在远离坑角位置比靠近坑角位置侧向位移更大,最大侧移范围为开挖深度的0.12%~0.41%,其侧向位移沿深度呈现“肚胀”形曲线,最大侧向位移发生在开挖深度以上4m到以下2m范围内;地下连续墙和立柱竖向位移主要以隆起为主,地下连续墙最大隆起位移为9.14mm,立柱最大隆起位移为地下连续墙的4倍;混凝土支撑对于下一阶段开挖起着关键作用,但对更深处土层开挖影响较小,混凝土支撑轴力最大值与地下连续墙的侧向位移密切相关。
关键词:基坑开挖;地下连续墙;立柱;侧向变形;隆起和沉降;施工监测;空间效应;深度效应
作者简介:任东兴,硕士,高级工程师,主要从事岩土工程勘察设计、施工及研究工作,Email:rendx07@126.com。邵康,博士,主要从事岩土与结构相互作用研究,Email:shaokang0724@126.com。
基金:国家自然科学基金(51808458)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 王卫东,丁文其,杨秀仁,等.基坑工程与地下工程——高效节能、环境低影响及可持续发展新技术[J].土木工程学报,2020,53(7):78-98.
[2] 王卫东,徐中华,宗露丹,等.上海国际金融中心超深大基坑工程变形性状实测分析[J].建筑结构,2020,50(18):126-135.
[3] 江毅,陈百曦.广州周大福金融中心基坑支护设计与监测分析[J].建筑结构,2019,49(20):104-110.
[4] 左卓,傅鹤林,张加兵,等.深厚软土地层长大深基坑开挖施工的实测与分析[J].现代隧道技术,2019,56(6):107-113.
[5] 廖少明,魏仕锋,谭勇,等.苏州地区大尺度深基坑变形性状实测分析[J].岩土工程学报,2015,37(3):458-469.
[6] 任彦华,李军,樊继良,等.深基坑工程中空间效应的影响分析[J].地下空间与工程学报,2015,11(S1):177-182.
[7] 罗忠行,牛建东,李泽玮,等.深基坑h型双排桩的变形计算及优化分析[J].铁道科学与工程学报,2020,17(7):1720-1727.
[8] 杨光华,黄忠铭,姜燕,等.深基坑支护双排桩计算模型的改进[J].岩土力学,2016,37(S2):1-15.
[9] 郑刚,王玉萍,程雪松,等.基坑倾斜桩支护性能及机理大型模型试验研究[J].岩土工程学报,2021,43(9):1581-1591.
[10] 张志红,秦文龙,张钦喜,等.悬挂式止水帷幕基坑控水优化方法[J].东北大学学报(自然科学版),2021,42(2):242-251.
[11] 曹成勇,施成华,彭立敏,等.深厚强透水地层基坑深层水平封底隔渗帷幕设计方法及其应用[J].中南大学学报(自然科学版),2020,51(4):1012-1021.
[12] 宋二祥,付浩,李贤杰.基坑坑底抗隆起稳定安全系数计算方法改进研究[J].土木工程学报,2021,54(3):109-118.
[13] 黄茂松,李弈杉,唐震,等.基于不排水强度的黏土基坑抗隆起稳定计算方法[J].岩土工程学报,2020,42(9):1577-1585.
[14] 许四法,周奇辉,郑文豪,等.基坑施工对邻近运营隧道变形影响全过程实测分析[J].岩土工程学报,2021,43(5):804-812.
[15] 李大鹏,阎长虹,张帅.深基坑开挖对周围环境影响研究进展[J].武汉大学学报(工学版),2018,51(8):659-668.
[16] 陈海洋,林杰.上海世博A09A-01地块建设项目岩土工程勘察报告[R].上海:上海岩土工程勘察设计研究院有限公司,2017:1-97.
[17] 王向军,王阿丹,陶露萍,等.世博A09A-01地块建设项目基坑工程安全评估报告及支护结构设计方案[Z].上海:上海地下空间与工程设计研究院,2017:1-104.
[18] 李镜培,陈浩华,李林,等.软土基坑开挖深度与空间效应实测研究[J].中国公路学报,2018,31(2):208-217.
[19] TAN Y,WANG D L.Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay.I:bottom-up construction of the central cylindrical shaft[J].Journal of Geotechnical and Geoenvironmental Engineering,2013,139(11):1875-1893.
[20] CHEN H H,LI J P,LI L.Performance of a zoned excavation by bottom-up technique in Shanghai soft soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2018,144(11):5018003.
Displacement and stress analysis of a Shanghai foundation pit at excavation stages
REN Dongxing HUANG Hai SHAO Kang LIU Huanhuan LUO Donglin XUE Peng
(Chengdu Surveying Geotechnical Research Institute Co., Ltd.of MCC School of Civil Engineering, Southwest Jiaotong University Sichuan Energy Saving and Environmental Protection Investment Co., Ltd.)
Abstract: Taking a foundation pit with the construction excavation depth of 20.8 m in Shanghai as the research object, the lateral and vertical displacement of the underground diaphragm wall, the vertical displacement of the stand column and the axial force of the concrete support in the five construction stages were monitored. The spatial effect and depth effect of the foundation pit deformation were analyzed by the lateral deformation of the enclosure structure with the difference of depth, location and construction stage, and the springing back characteristics of the foundation pit were analyzed by the vertical deformation law of the stand column and the underground diaphragm wall. The key role of support in each construction stage was analyzed based on the law of force variation with time. The analysis results show that the lateral displacement of the underground diaphragm wall is larger at the position far from the pit corner than near the pit corner, and the maximum lateral displacement range is 0.12% ~ 0.41% of the excavation depth; its lateral displacement presents a bulging curve along the depth, and the maximum lateral displacement occurs in the range of 4 m above the excavation depth to 2 m below; the vertical displacement of the underground diaphragm wall and stand column is mainly uplift, the maximum uplift displacement of the underground diaphragm wall is 9.14 mm, and the maximum uplift displacement of the stand column is 4 times that of the underground diaphragm wall; concrete support plays a key role in the next stage of excavation, but has little effect on the excavation of deeper soil layers, and the maximum axial force of concrete support is closely related to the lateral displacement of the underground diaphragm wall.
Keywords: foundation pit excavation; underground diaphragm wall; stand column; lateral deformation; uplift and settlement; construction monitoring; spatial effect; depth effect
309 0 0
文字:     A-     A+     默认 取消