碳中和背景下我国空调系统发展趋势

引用文献:

李先庭 赵阳 魏庆芃 逄秀锋 陈焕新 张小松 谢晓云 路宾 罗彬 徐宏庆 刘宇. 碳中和背景下我国空调系统发展趋势[J]. 暖通空调,2022,48(10).

Li Xianting Zhao Yang Wei Qingpeng Pang Xiufeng Chen Huanxin Zhang Xiaosong Xie Xiaoyun Lu Bin Luo Bin Xu Hongqing Liu Yu. Developing trend of air conditioning system oriented to carbon neutrality in China[J]. build,2022,48(10).

作者:李先庭 赵阳 魏庆芃 逄秀锋 陈焕新 张小松 谢晓云 路宾 罗彬 徐宏庆 刘宇
单位:清华大学 浙江大学 中国建筑科学研究院有限公司 华中科技大学 东南大学 广东美的暖通设备有限公司 北京市建筑设计研究院有限公司 中建三局第一建设安装有限公司
摘要:我国建筑空调系统在运行阶段的年碳排放量约为9.9亿t二氧化碳,降低其碳排放是实现碳达峰碳中和目标的重要挑战之一。本文对我国当前空调系统碳排放量进行了拆解,分析了影响空调系统碳排放的主要技术因素和非技术因素,讨论了降低空调运行碳排放的主要原则,展望了碳中和背景下空调领域重点技术与规范机制的未来发展方向。结果表明,我国空调领域未来应重点关注降低空调系统负荷、提高设备和系统能效的技术,以及制订与完善空调系统产碳量计算、减碳效果定量评估的规范与机制。
关键词:碳中和空调系统碳排放关键技术规范机制
作者简介:李先庭,男,1967年生,博士研究生,教授100084北京海淀区清华大学建筑学院建筑技术科学系E-mail:xtingli@tsinghua.edu.cn;
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 清华大学建筑节能研究中心.中国建筑节能年度发展研究报告2021[M].北京:中国建筑工业出版社,2021:46- 47.

[2] 国务院关于印发2030年前碳达峰行动方案的通知[EB/OL].[2022-02-17].http://www.gov.cn/zhengce/content/2021-10/26/content_5644984.htm.

[3] 胡建信.控制管理氢氟碳化物(HFCs)影响研究:机遇与挑战[R].北京:北京大学环境科学与工程学院,2013:191- 192.

[4] 刘庆开.浅谈空调冷热输配系统节能技术[J].建材与装饰,2020(13):9,11.

[5] 乔振勇,张展豪,张红,等.某卷烟厂生产车间环控和动力系统节能潜力分析[J].建筑节能,2020,48(7):150- 155.

[6] 陈新锦.电力柔性负荷调度研究[J].数字化用户,2017,23(50):42- 43.

[7] 中国标准化研究院,珠海格力电器股份有限公司,广东美的制冷设备有限公司,等.房间空气调节器能效限定值及能效等级:GB 21455—2019[S].北京:中国标准出版社,2019:1- 4.

[8] 李斌斌.SiO2气凝胶材料在建筑墙体保温中的应用研究[J].广东建材,2021,37(3):72- 75.

[9] 虞光洁.绿色建筑墙体的节能技术探讨[J].现代经济信息,2009(1):138- 139.

[10] JIANG S H,LI X T,LYU W H,et al.Numerical investigation of the energy efficiency of a serial pipe-embedded external wall system considering water temperature changes in the pipeline[J].Journal of building engineering,2020,31:101435.

[11] SHEN C,LI X T.Energy saving potential of pipe-embedded building envelope utilizing low-temperature hot water in the heating season[J].Energy and buildings,2017,138:308- 311.

[12] SHEN C,LI X T.Solar heat gain reduction of double glazing window with cooling pipes embedded in venetian blinds by utilizing natural cooling[J].Energy and buildings,2016,112:173- 183.

[13] 闫帅,沈翀,李先庭.嵌管式窗户全年动态性能预测方法[J].暖通空调,2018,48(2):18- 23.

[14] SHEN C,LI X T,YAN S.Numerical study on energy efficiency and economy of a pipe-embedded glass envelope directly utilizing ground-source water for heating in diverse climates[J].Energy conversion and management,2017,150:878- 889.

[15] ZHAI Y,MA Y G,DAVID S N,et al.Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling[J].Science,2017,355:1062.

[16] LYU W H,LI X T,YAN S,et al.Utilizing shallow geothermal energy to develop an energy efficient HVAC system[J].Renewable energy,2020,147:672- 682.

[17] 吕伟华,李先庭.浅表层地热能用于新风预处理的节能潜力分析[J].建筑科学,2019,35(6):116- 121.

[18] 李伟涛.桌面工位空调舒适性实验及气流组织模拟研究[D].大连:大连理工大学,2006:2- 6.

[19] VESEL M,ZEILER W.Personalized conditioning and its impact on thermal comfort and energy performance:a review[J].Renewable and sustainable energy reviews,2014,34:401- 408.

[20] WANG H,WANG G J,LI X T.Image-based occupancy positioning system using pose-estimation model for demand-oriented ventilation[J].Journal of building engineering,2021,39:102220.

[21] 姜凯迪.磁悬浮冷水机组在公共项目中的应用及研究[D].青岛:青岛理工大学,2019:15- 21.

[22] HUANG S F,ZUO W D,LU H X,et al.Performance comparison of a heating tower heat pump and an air-source heat pump:a comprehensive modeling and simulation study[J].Energy conversion and management,2019,180:1039- 1054.

[23] 张毅,张冠敏,冷学礼,等.无霜空气源热泵技术研究进展[J].化工学报,2020,71(12):5400- 5419.

[24] HU Z C,GENG S W,HUANG Y F,et al.Heat storage characteristics and application analysis of heat source tower in soil thermal balance of ground source heat pump[J].Energy and buildings,2021,235:110752.

[25] SHEN X H,LI N P,YONGGA A.Simulation research on the heating performance of the combined system of solar energy and heat-source tower heat pump in a hot summer and cold winter area[J].Energies,2021,14(7):1816.

[26] 王红利,黄翔,寇凡,等.数据中心用蒸发冷却(凝)技术发展现状[J].制冷与空调,2021,21(11):1- 6.

[27] ZHENG G,LI X.Construction method for air cooling/heating process in HVAC system based on grade match between energy and load[J].International journal of refrigeration,2021,131:10- 19.

[28] LIANG C,LI X T,SHI W X,et al.A direct expansion air handling unit assisted by liquid desiccant for different sensible and latent heat ratios[J].Energy and buildings,2021,238:110672.

[29] 祁鑫,王福忠,张丽,等.基于SVD-LSTM的高校学生宿舍空调负荷预测[J].电子科技,2020,33(11):59- 66.

[30] 王志成,辛洁晴,管国兵.中央空调节费运行方案及其适用性分析[J].电力自动化设备,2017,37(3):126- 131.

[31] 江亿.“光储直柔”——助力实现零碳电力的新型建筑配电系统[J].暖通空调,2021,51(10):1- 12.

[32] 逄秀锋,宋业辉,徐伟.我国建筑调适发展现状与前景[J].建筑节能,2020,48(10):1- 7.

[33] 上海市能效中心,上海冷冻空调行业协会,上海理工大学,等.集中式空调(中央空调)系统节能运行与管理技术要求:DB 31/T255—2020[S].上海:上海市市场监督管理局,2020:1- 6.

[34] 清华大学,中国标准化研究院,西北建筑设计院,等.空气调节系统经济运行:GB/T 17981—2007[S].北京:中国标准出版社,2007:2- 8.

[35] 上海市安装工程集团有限公司.通风与空调工程施工质量验收规范:GB/T 50243—2016[S].北京:中国计划出版社,2016:5- 9.

[36] 中国建筑科学研究院有限公司,中国疾病预防控制中心.空调通风系统运行管理标准:GB 50365—2019[S].北京:中国建筑工业出版社,2019:14- 18.

[37] ISO/TC59/SC17.Sustainability in buildings and civil engineering works—carbon metric of an existing building during use stage—part 1:calculation,reporting and communication:ISO 16745-1:2017[S].Geneva:International Organization for Standardization,2017:1- 38.

[38] ISO/TC59/SC17.Sustainability in buildings and civil engineering works—carbon metric of an existing building during use stage—part 2:verification:ISO 16745-2:2017[S].Geneva:International Organization for Standardization,2017:1- 12.

[39] 中国建筑科学研究院有限公司,中国建筑标准设计研究院有限公司.建筑碳排放计算标准:GB/T 51366—2019[S].北京:中国建筑工业出版社,2019:1- 21.

[40] 中国轻工业联合会.房间空气调节器性能标准:GB/T 7725—2004[S].北京:中国标准出版社,2004:12- 13.

[41] 中国电力企业联合会.集中式空调能效在线监测系统技术要求:DL/T 2035—2019[S].北京:中国电力出版社,2019:5- 16.

[42] 国家标准化管理委员会.多联式空调(热泵)机组能效限定值及能效等级:GB 21454—2021[S].北京:中国标准出版社,2021:3- 5.
Developing trend of air conditioning system oriented to carbon neutrality in China
Li Xianting Zhao Yang Wei Qingpeng Pang Xiufeng Chen Huanxin Zhang Xiaosong Xie Xiaoyun Lu Bin Luo Bin Xu Hongqing Liu Yu
(Tsinghua University Zhejiang University China Academy of Building Research Huazhong University of Science and Technology Southeast University GD Midea Heating & Ventilating Equipment Co.,Ltd. Beijing Institute of Architectural Design The First Construction Co.,Ltd.,of China Construction Third Engineering Bureau)
Abstract: Heating, ventilation and air conditioning(HVAC) systems in buildings are responsible for about 990 million tons of CO2 emissions annually in China. It is crucial to pay more attention to HVAC systems to peak CO2 emissions, and further to achieve carbon neutrality. This paper provides a comprehensive analysis on the CO2 emissions of HVAC systems in China. The main technical factors and non-technical factors which affect the amount of CO2 emissions of HVAC systems significantly are pointed out. The primary principles for reducing CO2 emissions in the sector of HVAC are also discussed. The key technologies and technical standards and codes in the future are predicted. It shows that we should focus on developing and promoting technologies which can reduce cooling/heating loads and/or increase energy efficiency of devices as well as HVAC systems. It is also urgent to develop effective standards and policies to encourage low CO2 emissions in the HVAC field.
Keywords: carbon neutrality; air conditioning system; CO2 emission; key technology; standard and code;
958 0 0
文字:     A-     A+     默认 取消