内配格构式钢骨-钢管混凝土构件偏压性能试验研究

引用文献:

陈庆胜 ,李博凡 ,孔龙 ,荣鹿 ,侯新宇 ,王先铁. 内配格构式钢骨-钢管混凝土构件偏压性能试验研究[J]. 建筑结构,2022,48(13):77-85.

CHEN Qingsheng ,LI Bofan ,KONG Long, RONG Lu ,HOU Xinyu ,WANG Xiantie. Experimental study on eccentrically compression behaviour of concrete-filled steel tubular members with reinforcing lattice angles[J]. Building Structure,2022,48(13):77-85.

作者:陈庆胜 ,李博凡 ,孔龙 ,荣鹿 ,侯新宇 ,王先铁
单位:国网甘肃省经济技术研究院 ,西安建筑科技大学土木工程学院
摘要:对4组共8个不同内部构造形式的钢管混凝土试件进行了偏心受压试验。结果表明:各组试件的破坏模式均为试件整体弯曲,偏压侧钢管局部鼓曲。内配纵向加劲肋减缓了钢管的局部鼓曲。与普通钢管混凝土试件相比,内配纵向加劲肋试件的极限承载力提高3.80%,内配格构式钢骨试件的极限承载力提高8.28%,同时配置纵向加劲肋和格构式钢骨试件的极限承载力提高14.33%。利用有限元软件对内配格构式钢骨-钢管混凝土构件进行偏心受压数值模拟,分析了构件的受力机理和各部件的应力发展过程,研究了混凝土强度、钢管强度、钢管径厚比、钢骨强度、钢骨尺寸以及荷载偏心距对其承载性能的影响。提出了内配格构式钢骨-钢管混凝土构件的偏压承载力计算公式,公式计算结果与试验结果吻合较好。
关键词:格构式钢骨;钢管混凝土;偏心受压;试验研究;承载力计算方法
作者简介:陈庆胜,学士,高级工程师,主要从事输电线路设计与研究,Email:544149121@qq.com。王先铁,博士,教授,博士生导师,主要从事钢结构与钢管混凝土结构研究,Email:wangxiantie@163.com。
基金:国家自然科学基金项目(51678474)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 王清湘,赵大洲,关萍.轴心受压钢骨—钢管混凝土组合短柱力学性能研究[J].中国公路学报,2004,17(3):36-40.
[2] 杨有福,韩林海.矩形钢管混凝土柱的耐火性能和抗火设计方法[J].建筑结构学报,2004,25(1):25-35.
[3] 徐菲.薄壁圆钢管混凝土构件与节点力学性能研究[D].杭州:浙江大学,2016.
[4] WANG Q X,ZHAO D Z,GUAN P.Experimental study on the strength and ductility of steel tubular columns filled with steel-reinforced concrete[J].Engineering Structures,2004,26(7):907-915.
[5] QI H T,GUO L H,LIU J P,et al.Axial load behavior and strength of tubed steel reinforced-concrete (SRC)stub columns[J].Thin-Walled Structures,2011,49(9):1141-1150.
[6] CAI J M,PAN J L,WU Y F.Mechanical behavior of steel-reinforced concrete-filled steel tubular (SRCFST)columns under uniaxial compressive loading[J].Thin-Walled Structures,2015,97:1-10.
[7] DING F X,ZHANG T,LIU X M,et al.Behavior of steel-reinforced concrete-filled square steel tubular stub columns under axial loading[J].Thin-Walled Structures,2017,119:737-748.
[8] 何益斌,肖阿林,郭健,等.钢骨-钢管自密实高强混凝土偏压柱力学性能试验研究[J].建筑结构学报,2010,31(4):102-109.
[9] 史艳莉,车向龙,王景玄.内配工字型钢的矩形钢管混凝土双向偏压构件参数分析[J].工程力学,2015,32(S1):254-260.
[10] WANG X D,LIU J P,ZHOU X H.Behaviour and design method of short square tubed-steel-reinforced-concrete columns under eccentric loading[J].Journal of Constructional Steel Research,2016,116:193-203.
[11] 徐菲,陈驹,金伟良,等.轴心受压格构式钢骨-钢管混凝土柱试验研究[J].建筑结构学报,2013,34(S1):227-232.
[12] XU F,CHEN J,CHAN T M.Numerical investigation on compressive performance of CFST columns with encased built-up lattice-angles[J].Journal of Constructional Steel Research,2017,137:242-253.
[13] 钢及钢产品力学性能试验取样位置及试样制备:GB/T 2975—2018[S].北京:中国标准出版社,2018.
[14] 金属材料室温拉伸试验方法:GB/T 228—2010[S].北京:中国标准出版社,2011.
[15] 混凝土物理力学性能试验方法标准:GB/T 50081—2019[S].北京:中国建筑工业出版社,2019.
[16] Hibbitt H,Karlsson B,Sorensen P.Abaqus analysis user’s manual version 6.10[M].Providence,RI,USA:Dassault Systèmes Simulia Corporation,2011.
[17] 韦建刚,罗霞,欧智菁,等.圆高强钢管超高性能混凝土短柱轴压性能试验研究[J].建筑结构学报,2020,41(11):16-28.
[18] 钢管混凝土结构技术规范:GB 50936—2014[S].北京:中国建筑工业出版社,2014.
[19] Specification for structural steel buildings:AISC 360—16[S].Chicago:American Institute of Steel Construction,2016.
[20] Eurocode 4:design of composite steel and concrete structures:part 1-1:general rules and rules for buildings[S].London:British Standards Institution,2004.
Experimental study on eccentrically compression behaviour of concrete-filled steel tubular members with reinforcing lattice angles
CHEN Qingsheng ,LI Bofan ,KONG Long, RONG Lu ,HOU Xinyu ,WANG Xiantie
(State Grid Gansu Economic Research Institute School of Civil Engineering, Xi'an University of Architecture and Technology)
Abstract: The eccentric compression tests of 4 sets concrete-filled steel tubular(CFST) specimens with different internal details of the longitudinal stiffeners and lattice steels were carried out. The results show that the failure pattern of all specimens are overall instability accompanied by local buckling of the steel tube. For the specimens with longitudinal stiffeners, local buckling of steel tube buckling are reduced. The ultimate load bearing capacity of the specimen with longitudinal stiffeners, reinforcing lattice angles and both longitudinal stiffeners and reinforcing lattice angles increases by 3.80%, 8.28% and 14.33%. The numerical simulation analysis of eccentric compression was carried out on the CFST with reinforcing lattice angles, and the force mechanism of the member and the stress development process of each component were obtained. The influence of concrete strength, steel tube strength, tube diameter-thickness ratio, lattice angles steel strength, lattice angles size and load eccentricity on its load-bearing performance was obtained. The formula for calculating the eccentric bearing capacity of the CFST member with reinforcing lattice angles was proposed. The calculation results of the formula are in good agreement with the test results.
Keywords: reinforcing lattice angle; concrete-filled steel tubular; eccentric compression; experimental study; bearing capacity calculation method
364 0 0
文字:     A-     A+     默认 取消