软土地区56m深圆形基坑的优化设计与实践

引用文献:

王卫东 徐中华 宗露丹 朱雁飞 翁其平. 软土地区56m深圆形基坑的优化设计与实践[J]. 建筑结构,2022,48(10):1-10.

WANG Weidong XU Zhonghua ZONG Ludan ZHU Yanfei WENG Qiping. Optimal design and practice of a 56m ultra-deep circular excavation in soft soils[J]. Building Structure,2022,48(10):1-10.

作者:王卫东 徐中华 宗露丹 朱雁飞 翁其平
单位:华东建筑集团股份有限公司 华东建筑设计研究院有限公司 上海隧道工程有限公司
摘要:上海苏州河段深层排水调蓄管道系统工程中的苗圃竖井基坑直径30m,挖深56.3m,为软土地区超深圆形基坑工程。由于原设计逆作内衬墙方案多达15个施工工况,施工组织难度大,提出了竖向设置5道环梁的顺作优化方案。基坑开挖前采用三维m法,考虑土与结构共同作用的三维有限元法分别对优化方案和原设计方案进行了模拟分析。结果表明:优化方案的地下连续墙满足承载力要求,验证了优化方案的可行性。采用优化方案实施的苗圃竖井基坑实测数据与计算结果规律基本一致;地下连续墙侧向变形很小,对周边建(构)筑物影响也很小;地下连续墙表现出以环向轴压为主、竖向受弯为辅的受力性态。苗圃竖井基坑采用顺作优化方案,实施顺利并取得了良好的技术经济效果,为软土地区类似超深圆形基坑工程设计和施工提供了借鉴。
关键词:超深圆形基坑;软土;三维分析;优化方案;变形性状
作者简介:王卫东,博士,全国工程勘察设计大师,教授级高级工程师,主要从事岩土工程研究,Email:weidong_wang@arcplus.com。*宗露丹,硕士,工程师,主要从事岩土工程设计工作,Email:zongludan@126.com。
基金:上海市科学技术委员会科研计划项目(No.13231201006)。
尊敬的用户,本篇文章需要2元,点击支付交费后阅读
参考文献[1] 李培国,章风仙.人民广场地下变电站深基坑施工简介[J].岩土工程师,1992,4(1):41-46.
[2] 刘建航,候学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
[3] KUMAGAI T,ARIIZUMI K,KASHIWAGI A.Behaviour and analysis of a large-scale cylindrical earth retaining structure[J].Journal of the Japanese Geotechnical Society Soils & Foundation,2008,39(3):13-26.
[4] 翟杰群,谢小林,贾坚.“上海中心”深大圆形基坑的设计计算方法研究[J].岩土工程学报,2010,32(S1):392-296.
[5] 张惠甸,夏秦强,谢非.深大圆形基坑的结构计算与坑底抗隆起问题的分析[C]//上海国际隧道工程研讨会论文集.2003:574-586.
[6] 王卫东,朱伟林,陈峥,等.上海世博500kV地下变电站超深基坑工程的设计、研究与实践[J].岩土工程学报,2008,30(S1):564-576.
[7] STANLEY M,GATWARD J,PULLER D,et al.Design and construction of the Thames Water Lee Tunnel Shafts,London:part 1.construction of the shaft diaphragm walls[J].Tunnels & Tunnelling International,2012(增刊):103-106.
[8] STANLEY M,GATWARD J,PULLER D,et al.Design and construction of the Thames Water Lee Tunnel Shafts,London:part 2.construction of the shaft base plugs,slipformed inner lining and annulus infill[J].Tunnels & Tunnelling International,2012(增刊):106-108.
[9] 建筑基坑支护技术规程:JGJ 120—2012[S].北京:中国建筑工业出版社,2012.
[10] 沈健,王建华,高绍武.基于“m”法的深基坑支护结构三维分析方法[J].地下空间与工程学报,2005,1(4):50-53.
[11] 张娇,王卫东,李靖,等.分区施工基坑对邻近隧道变形影响的三维有限元分析[J].建筑结构,2017,47(2):90-95.
[12] 徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形形状研究[D].上海:上海交通大学,2007.
[13] 宋青君,王卫东.上海世博500kV地下变电站圆形深基坑逆作法变形与受力特性实测分析[J].建筑结构学报,2010,31(5):181-187.
[14] BURLAND J B.“Small is beautiful”-the stiffness of soils at small strains[J].Canadian Geotechnical Journal,1989,26(4):499-516.
[15] KUNG T C.Surface settlement induced by excavation with consideration of small strain behavior of Taipei silty clay[D].Taipei:National Taiwan University of Science and Technology,2007.
[16] 王卫东,王浩然,徐中华.基坑开挖数值分析中土体硬化模型参数的试验研究[J].岩土力学,2012,33(8):2283-2290.
[17] 李青,徐中华,王卫东,等.上海典型黏土小应变剪切模量现场和室内试验研究[J].岩土力学,2016,37(11):3263-3269.
[18] 王浩然.上海软土地区深基坑变形与环境影响预测方法研究[D].上海:同济大学,2012.
[19] 张娇.上海软土小应变特性及其在基坑变形分析中的应用[D].上海:同济大学,2017.
[20] 上海市住房和城乡建设管理委员会.基坑工程技术标准:DG/TJ 08-61—2018 [S].上海:同济大学出版社,2018.
Optimal design and practice of a 56m ultra-deep circular excavation in soft soils
WANG Weidong XU Zhonghua ZONG Ludan ZHU Yanfei WENG Qiping
(East China Construction Group Co., Ltd. East China Architecture Design & Research Institute Co., Ltd. Shanghai Tunnel Engineering Construction Co., Ltd.)
Abstract: The diameter and excavation depth of the Miaopu shaft circular excavation of the deep tunnel sewerage project of Suzhou River in Shanghai were 30 m and 56.3 m, respectively, which was a ultra-deep circular excavation project in soft soils. In original design, the shaft would be excavated in 15 steps using top-down method. This would bring great difficulties to construction organization. Therefore, an optimized bottom-up construction scheme with 5 ring beams was proposed. Three dimensional beam-spring model method and three dimensional finite element method considering the interaction of soils and structures were used to simulate and analyze the original and the optimized construction scheme of the deep excavation. The results show that the diaphragm wall could sustain the lateral pressure during excavation using the optimized bottom-up construction scheme. Monitoring results showed that deformation of the circular diaphragm wall and the adjacent facilities were very small. The diaphragm wall was mainly subjected to circumferential axial compression and supplemented by vertical bending. These monitoring results were consistent with the calculation results. Good technical and economic results have been achieved using the optimized bottom-up construction scheme and this provides a reference for the design and construction of similar ultra-deep circular excavation in soft soil area.
Keywords: ultra-deep circular excavation; soft soil; three dimensional analysis; optimal scheme; deformation behavior
538 0 0
文字:     A-     A+     默认 取消